Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the continuous advancement in the dual-carbon strategy, the upswell in the demand for renewable energy sources has motivated extensive research on the development of novel energy storage technologies. As a new type of energy storage device, carbon-based redox-enhanced supercapacitors (RE-SCs) are designed by employing soluble redox electrolytes into the existing devices, exploiting the merits of the diffusion-controlled faradaic process of the redox electrolyte at the surface of carbon electrodes, thus leading to improved energy density without the cost of power density. During the past years, great progress has been made in the design of novel redox electrolytes and the configuration of new devices. However, the development of these systems is plagued by severe self-discharge. Herein, a comprehensive picture of the fundamentals, together with a discussion and outline of the challenges and future perspectives of RE-SCs, are provided. We highlight the impacts of redox electrolytes on capacitance, energy density, and power output. Notably, the self-discharge behavior owing to the introduction of redox electrolyte and its mechanism are also discussed, followed by a summary of the strategies from materials to system optimization. Furthermore, possible directions for future research are discussed.
Zhao, L., He, Y. B., Li, C. F., Jiang, K. L., Wang, P., Ma, J. B., Xia, H. Y., Chen, F. Y., He, Y. B., Chen, Z., et al. (2019). Compact Si/C anodes fabricated by simultaneously regulating the size and oxidation degree of Si for Li-ion batteries. J. Mater. Chem. A. 7, 24356–24365.
Guo, X. Y., Zhang, X. S., Wang, Y. X., Tian, X. D., Qiao, Y. (2022). Converting furfural residue wastes to carbon materials for high performance supercapacitor. Green Energy Environ. 7, 1270–1280.
Zhou, H. J., Zhu, G. Y., Dong, S. Y., Liu, P., Lu, Y. Y., Zhou, Z., Cao, S., Zhang, Y. Z., Pang, H. (2023). Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 35, 2211523.
Shao, Y. L., El-Kady, M. F., Sun, J. Y., Li, Y. G., Zhang, Q. H., Zhu, M. F., Wang, H. Z., Dunn, B., Kaner, R. B. (2018). Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280.
Liu, Y. F., Du, X. M., Li, Y., Bao, E. H., Ren, X. L., Chen, H. Y., Tian, X. D., Xu, C. J. (2022). Nanosheet-assembled porous MnCo2O4.5 microflowers as electrode material for hybrid supercapacitors and lithium-ion batteries. J. Colloid Interface Sci. 627, 815–826.
Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., Freunberger, S. A., Favier, F., Fontaine, O. (2017). Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–453.
Evanko, B., Boettcher, S. W., Yoo, S. J., Stucky, G. D. (2017). Redox-enhanced electrochemical capacitors: status, opportunity, and best practices for performance evaluation. ACS Energy Lett. 2, 2581–2590.
Akinwolemiwa, B., Peng, C., Chen, G. Z. (2015). Redox electrolytes in supercapacitors. J. Electrochem. Soc. 162, A5054–A5059.
Li, Y. Y., Cao, R. Y., Song, J. Y., Liang, L., Zhai, T., Xia, H. (2021). Recent advances in coupling carbon-based electrode-redox electrolyte system. Mater. Res. Bull. 139, 111249.
Gorska, B., Frackowiak, E., Beguin, F. (2018). Redox active electrolytes in carbon/carbon electrochemical capacitors. Curr. Opin. Electrochem. 9, 95–105.
Sun, L., Zhuo, K. L., Chen, Y. J., Du, Q. Z., Zhang, S. J., Wang, J. J. (2022). Ionic liquid-based redox active electrolytes for supercapacitors. Adv. Funct. Mater. 32, 2203611.
Yang, N. J., Yu, S. Y., Zhang, W. J., Cheng, H. M., Simon, P., Jiang, X. (2022). Electrochemical capacitors with confined redox electrolytes and porous electrodes. Adv. Mater. 34, 2202380.
Shabangoli, Y., Rahmanifar, M. S., El-Kady, M. F., Noori, A., Mousavi, M. F., Kaner, R. B. (2018). Thionine functionalized 3D graphene aerogel: Combining simplicity and efficiency in fabrication of a metal-free redox supercapacitor. Adv. Energy Mater. 8, 1802869.
Chung, J., Park, H., Jung, C. (2021). Electropolymerizable isocyanate-based electrolytic additive to mitigate diffusion-controlled self-discharge for highly stable and capacitive activated carbon supercapacitors. Electrochim. Acta. 369, 137698.
Tanahashi, I. (2005). Capacitance enhancement of activated carbon fiber cloth electrodes in electrochemical capacitors with a mixed aqueous solution of H2SO4 and AgNO3. Electrochem. Solid-State Lett. 8, A627–A629.
Sun, X. N., Hu, W., Xu, D., Chen, X. Y., Cui, P. (2017). Integration of redox additive in H2SO4 solution and the adjustment of potential windows for improving the capacitive performances of supercapacitors. Ind. Eng. Chem. Res. 56, 2433–2443.
Sun, S., Rao, D. W., Zhai, T., Liu, Q., Huang, H., Liu, B., Zhang, H. S., Xue, L., Xia, H. (2020). Synergistic interface-assisted electrode–electrolyte coupling toward advanced charge storage. Adv. Mater. 32, 2005344.
Byeon, J., Ko, J., Lee, S., Kim, D. H., Kim, S. W., Kim, D., Oh, W., Hong, S., Yoo, S. J. (2023). Solubility-enhancing hydrotrope electrolyte with tailor-made organic redox-active species for redox-enhanced electrochemical capacitors. ACS Energy Lett. 8, 2345–2355.
Kasturi, P. R., Harivignesh, R., Lee, Y. S., Selvan, R. K. (2020). Hydrothermally derived porous carbon and its improved electrochemical performance for supercapacitors using redox additive electrolytes. J. Phys. Chem. Solids. 143, 109447.
Zhang, R., He, X. R. (2015). Crystallization and molecular dynamics of ethylene-vinyl acetate copolymer/butyl rubber blends. RSC Adv. 5, 130–135.
Sun, S., Liu, B., Zhang, H. S., Guo, Q. B., Xia, Q. Y., Zhai, T., Xia, H. (2021). Boosting energy storage via confining soluble redox species onto solid–liquid interface. Adv. Energy Mater. 11, 2003599.
Park, Y., Choi, H., Lee, D. G., Kim, M. C., Tran, N. A. T., Cho, Y., Lee, Y. W., Sohn, J. I. (2020). Rational design of electrochemical iodine-based redox mediators for water-proofed flexible fiber supercapacitors. ACS Sustainable Chem. Eng. 8, 2409–2415.
Wang, G. X., Zhang, M. Y., Xu, H. F., Lu, L., Xiao, Z. Y., Liu, S. (2018). Synergistic interaction between redox-active electrolytes and functionalized carbon in increasing the performance of electric double-layer capacitors. J. Energy Chem. 27, 1219–1224.
Sandhiya, M., Vivekanand, Balaji, S. S., Sathish, M. (2021). Unrevealed performance of NH4VO3 as a redox-additive for augmenting the energy density of a supercapacitor. J. Phys. Chem. C. 125, 8068–8079.
He, Z. Q., Chen, D. D., Wang, M., Li, C. X., Chen, X. Y., Zhang, Z. J. (2020). Sulfur modification of carbon materials as well as the redox additive of Na2S for largely improving capacitive performance of supercapacitors. J. Electroanal. Chem. 856, 113678.
Singh, C., Paul, A. (2018). Immense microporous carbon@hydroquinone metamorphosed from nonporous carbon as a supercapacitor with remarkable energy density and cyclic stability. ACS Sustainable Chem. Eng. 6, 11367–11379.
Hu, L. T., Shi, C., Guo, K., Zhai, T. Y., Li, H. Q., Wang, Y. G. (2018). Electrochemical double-layer capacitor energized by adding an ambipolar organic redox radical into the electrolyte. Angew. Chem. Int. Ed. 57, 8214–8218.
Zhai, D. D., Liu, H., Wang, M., Wu, D., Chen, X. Y., Zhang, Z. J. (2019). Integrating surface functionalization and redox additives to improve surface reactivity for high performance supercapacitors. Electrochim. Acta. 323, 134810.
Yoon, H., Kim, H. J., Yoo, J. J., Yoo, C. Y., Park, J. H., Lee, Y. A., Cho, W. K., Han, Y. K., Kim, D. H. (2015). Pseudocapacitive slurry electrodes using redox-active quinone for high-performance flow capacitors: an atomic-level understanding of pore texture and capacitance enhancement. J. Mater. Chem. A. 3, 23323–23332.
Xiong, T., Lee, W. S. V., Chen, L., Tan, T. L., Huang, X. L., Xue, J. M. (2017). Indole-based conjugated macromolecules as a redox-mediated electrolyte for an ultrahigh power supercapacitor. Energy Environ. Sci. 10, 2441–2449.
Shakil, R., Shaikh, M. N., Shah, S. S., Reaz, A. H., Roy, C. K., Chowdhury, A. N., Aziz, M. A. (2021). Development of a novel bio-based redox electrolyte using pivalic acid and ascorbic acid for the activated carbon-based supercapacitor fabrication. Asian J. Org. Chem. 10, 2220–2230.
Xie, H. J., Gélinas, B., Rochefort, D. (2016). Redox-active electrolyte supercapacitors using electroactive ionic liquids. Electrochem. Commun. 66, 42–45.
Shang, W. X., Yu, W. T., Xiao, X., Ma, Y. Y., He, Y., Zhao, Z. X., Tan, P. (2023). Insight into the self-discharge suppression of electrochemical capacitors: Progress and challenges. Adv. Powder Mater. 2, 100075.
Lewandowski, A., Jakobczyk, P., Galinski, M., Biegun, M. (2013). Self-discharge of electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 15, 8692–8699.
Andreas, H. A. (2015). Self-discharge in electrochemical capacitors: a perspective article. J. Electrochem. Soc. 162, A5047–A5053.
Wang, K. P., Yao, L. L., Jahon, M., Liu, J. X., Gonzalez, M., Liu, P., Leung, V., Zhang, X. Y., Ng, T. N. (2020). Ion-exchange separators suppressing self-discharge in polymeric supercapacitors. ACS Energy Lett. 5, 3276–3284.
Buxton, W. G., King, S. G., Stolojan, V. (2023). Suppression of self-discharge in aqueous supercapacitor devices incorporating highly polar nanofiber separators. Energy Environ. Mater. 6, e12363.
Yu, X. W., Wu, H., Koo, J. H., Manthiram, A. (2020). Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium–sulfur batteries. Adv. Energy Mater. 10, 1902872.
Liang, N., Wu, X. Y., Lv, Y., Guo, J. X., Zhang, X. L., Zhu, Y. F., Liu, H. B., Jia, D. Z. (2022). A graphdiyne oxide composite membrane for active electrolyte enhanced supercapacitors with super long self-discharge time. J. Mater. Chem. C. 10, 2821–2827.
Chen, L. B., Bai, H., Huang, Z. F., Li, L. (2014). Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy Environ. Sci. 7, 1750–1759.
Chun, S. E., Evanko, B., Wang, X. F., Vonlanthen, D., Ji, X. L., Stucky, G. D., Boettcher, S. W. (2015). Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818.
Evanko, B., Yoo, S. J., Chun, S. E., Wang, X. F., Ji, X. L., Boettcher, S. W., Stucky, G. D. (2016). Efficient charge storage in dual-redox electrochemical capacitors through reversible counterion-induced solid complexation. J. Am. Chem. Soc. 138, 9373–9376.
Yoo, S. J., Evanko, B., Wang, X. F., Romelczyk, M., Taylor, A., Ji, X. L., Boettcher, S. W., Stucky, G. D. (2017). Fundamentally addressing bromine storage through reversible solid-state confinement in porous carbon electrodes: design of a high-performance dual-redox electrochemical capacitor. J. Am. Chem. Soc. 139, 9985–9993.
Shi, M. W., Zhang, Z. L., Zhao, M., Lu, X. M., Wang, Z. L. (2021). Reducing the self-discharge rate of supercapacitors by suppressing electron transfer in the electric double layer. J. Electrochem. Soc. 168, 120548.
Wang, Z. X., Chu, X., Xu, Z., Su, H., Yan, C., Liu, F. Y., Gu, B. N., Huang, H. C., Xiong, D., Zhang, H. P., et al. (2019). Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer. J. Mater. Chem. A. 7, 8633–8640.
Zhao, M., Shi, M. W., Zhou, H. H., Zhang, Z. L., Yang, W., Ma, Q., Lu, X. M. (2021). Self-discharge of supercapacitors based on carbon nanosheets with different pore structures. Electrochim. Acta. 390, 138783.
Zhang, W., Yang, W., Zhou, H. H., Zhang, Z. L., Zhao, M., Liu, Q., Yang, J., Lu, X. M. (2020). Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochim. Acta. 357, 136855.
Lee, J., Srimuk, P., Fleischmann, S., Ridder, A., Zeiger, M., Presser, V. (2017). Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency. J. Mater. Chem. A. 5, 12520–12527.
Zhao, Y., Taylor, E. E., Hu, X. D., Evanko, B., Zeng, X. J., Wang, H. B., Ohnishi, R., Tsukazaki, T., Li, J. F., Stadie, N. P., et al. (2021). What structural features make porous carbons work for redox-enhanced electrochemical capacitors? A fundamental investigation. ACS Energy Lett. 6, 854–861.
Schweizer, S., Landwehr, J., Etzold, B. J. M., Meißner, R. H., Amkreutz, M., Schiffels, P., Hill, J. R. (2019). Combined computational and experimental study on the influence of surface chemistry of carbon-based electrodes on electrode–electrolyte interactions in supercapacitors. J. Phys. Chem. C. 123, 2716–2727.
Ike, I. S., Sigalas, I., Iyuke, S. (2016). Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review. Phys. Chem. Chem. Phys. 18, 661–680.
Shul, G., Bélanger, D. (2016). Self-discharge of electrochemical capacitors based on soluble or grafted quinone. Phys. Chem. Chem. Phys. 18, 19137–19145.
Cao, R. Y., Zhang, Y., Du, Y. N., Zeng, Y. Y., Yu, M. H., Zhai, T., Xia, H. (2021). Coupling electrode-redox electrolyte within carbon nanotube arrays for supercapacitors with suppressed self-discharge. Sustainable Mater. Technol. 28, e00284.
Mai, L. Q., Minhas-Khan, A., Tian, X. C., Hercule, K. M., Zhao, Y. L., Lin, X., Xu, X. (2013). Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat. Commun. 4, 2923.
Sheng, L. Z., Jiang, L. L., Wei, T., Liu, Z., Fan, Z. J. (2017). Spatial charge storage within honeycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities. Adv. Energy Mater. 7, 1700668.
Frackowiak, E., Fic, K., Meller, M., Lota, G. (2012). Electrochemistry serving people and nature: High-energy ecocapacitors based on redox-active electrolytes. ChemSusChem. 5, 1181–1185.
Lee, J., Krüner, B., Tolosa, A., Sathyamoorthi, S., Kim, D., Choudhury, S., Seo, K. H., Presser, V. (2016). Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling. Energy Environ. Sci. 9, 3392–3398.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.