Journal Home > Volume 1 , Issue 2

Sn has been considered one of the most promising metallic anode materials for lithium-ion batteries (LIBs) because of its high specific capacity. Herein, we report a novel amorphous tin-titanium-ethylene glycol (Sn-Ti-EG) bimetal organic compound as an anode for LIBs. The Sn-Ti-EG electrode exhibits exceptional cyclic stability with high Li-ion storage capacity. Even after 700 cycles at a current density of 1.0 A g−1, the anode maintains a capacity of 345 mAh g−1. The unique bimetal organic structure of the Sn-Ti-EG anode and the strong coordination interaction between Sn/Ti and O within the framework effectively suppress the aggregation of Sn atoms, eliminating the usual pulverization of bulk Sn through volume expansion. Furthermore, the Sn M-edge of the X-ray absorption near-edge structure spectra obtained using soft X-ray absorption spectroscopy signifies the conversion of Sn2+ ions into Sn0 during the initial lithiation process, which is reversible upon delithiation. These findings reveal that Sn is one of the most active components that account for the excellent electrochemical performance of the Sn-Ti-EG electrode, whereas Ti has no practical contribution to the capacity of the electrode. The reversible formation of organic functional groups on the solid electrolyte interphase is also partly responsible for its cyclic stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Strong coordination interaction in amorphous Sn-Ti-ethylene glycol compound for stable Li-ion storage

Show Author's information Yuqing Cai1,Haigang Liu2,Haoran Li1Qianzi Sun1Xiang Wang1Fangyuan Zhu2Ziquan Li1( )Jang-Kyo Kim3( )Zhen-Dong Huang1( )
State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates

Yuqing Cai and Haigang Liu contributed equally to this work.

Abstract

Sn has been considered one of the most promising metallic anode materials for lithium-ion batteries (LIBs) because of its high specific capacity. Herein, we report a novel amorphous tin-titanium-ethylene glycol (Sn-Ti-EG) bimetal organic compound as an anode for LIBs. The Sn-Ti-EG electrode exhibits exceptional cyclic stability with high Li-ion storage capacity. Even after 700 cycles at a current density of 1.0 A g−1, the anode maintains a capacity of 345 mAh g−1. The unique bimetal organic structure of the Sn-Ti-EG anode and the strong coordination interaction between Sn/Ti and O within the framework effectively suppress the aggregation of Sn atoms, eliminating the usual pulverization of bulk Sn through volume expansion. Furthermore, the Sn M-edge of the X-ray absorption near-edge structure spectra obtained using soft X-ray absorption spectroscopy signifies the conversion of Sn2+ ions into Sn0 during the initial lithiation process, which is reversible upon delithiation. These findings reveal that Sn is one of the most active components that account for the excellent electrochemical performance of the Sn-Ti-EG electrode, whereas Ti has no practical contribution to the capacity of the electrode. The reversible formation of organic functional groups on the solid electrolyte interphase is also partly responsible for its cyclic stability.

Keywords: ethylene glycol, lithium-ion batteries, anode materials, tin, bimetal organic compounds

References(52)

[1]

Liu, Z., Deng, Z., He, G., Wang, H. L., Zhang, X., Lin, J., Qi, Y., Liang, X. (2022). Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155.

[2]

Kulova, T. L., Fateev, V. N., Seregina, E. A., Grigoriev, A. S. (2020). A brief review of post-lithium-ion batteries. Int. J. Electrochem. Sci. 15, 7242–7259.

[3]

Zhu, Z. X., Jiang, T. L., Ali, M., Meng, Y. H., Jin, Y., Cui, Y., Chen, W. (2022). Rechargeable batteries for grid scale energy storage. Chem. Rev. 122, 16610–16751.

[4]

Kebede, A. A., Kalogiannis, T., van Mierlo, J., Berecibar, M. (2022). A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 159, 112213.

[5]

Li, M., Lu, J., Chen, Z. W., Amine, K. (2018). 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561.

[6]

Li, J. L., Fleetwood, J., Hawley, W. B., Kays, W. (2022). From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 122, 903–956.

[7]

Aravindan, V., Lee, Y. S., Madhavi, S. (2015). Research progress on negative electrodes for practical li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 5, 1402225.

[8]

Liang, S. Z., Cheng, Y. J., Zhu, J., Xia, Y. G., Müller-Buschbaum, P. (2020). A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 4, 2000218.

[9]

Wu, M. G., Xu, B. L., Zhang, Y. F., Qi, S. H., Ni, W., Hu, J., Ma, J. M. (2020). Perspectives in emerging bismuth electrochemistry. Chem. Eng. J. 381, 122558.

[10]

Moolayadukkam, S., Bopaiah, K. A., Parakkandy, P. K., Thomas, S. (2022). Antimony (Sb)-based anodes for lithium–ion batteries: recent advances. Condens. Matter. 7, 27.

[11]

Ying, H. J., Han, W. Q. (2017). Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 4, 1700298.

[12]

Xin, F. X., Whittingham, M. S. (2020). Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries. Electrochem. Energy Rev. 3, 643–655.

[13]

Yi, Z., Wang, Z. M., Cheng, Y., Wang, L. M. (2018). Sn-based intermetallic compounds for Li-ion batteries: structures, lithiation mechanism, and electrochemical performances. Energy Environ. Sci. 1, 132–147.

[14]

Wang, B., Luo, B., Li, X. L., Zhi, L. J. (2012). The dimensionality of Sn anodes in Li-ion batteries. Mater. Today 15, 544–552.

[15]

Zhang, B., Yu, Y., Huang, Z. D., He, Y. B., Jang, D., Yoon, W. S., Mai, Y. W., Kang, F. Y., Kim, J. K. (2012). Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy Environ. Sci. 5, 9895–9902.

[16]

Li, W., Yang, R., Zheng, J., Li, X. G. (2013). Tandem plasma reactions for Sn/C composites with tunable structure and high reversible lithium storage capacity. Nano Energy 2, 1314–1321.

[17]

Niu, J. Z., Gao, H., Ma, W. S., Luo, F. K., Yin, K. B., Peng, Z. Q., Zhang, Z. H. (2018). Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries. Energy Storage Mater. 14, 351–360.

[18]

Wang, G. X., Yao, J., Ahn, J. H., Liu, H. K., Dou, S. X. (2004). Electrochemical properties of nanosize Sn-coated graphite anodes in lithium-ion cells. J. Appl. Electrochem. 34, 187–190.

[19]

Tang, X. X., Lv, L. P., Chen, S. Q., Sun, W. W., Wang, Y. (2022). Tin-nitrogen coordination boosted lithium-storage sites and electrochemical properties in covalent-organic framework with layer-assembled hollow structure. J. Colloid Interface Sci. 622, 591–601.

[20]

Pan, F. S., Cao, Y., Xu, M., Shao, L. P., Sun, J., Chen, A. B. (2020). A layered-nanospace-confinement strategy for the synthesis of two-dimensional tin/carbon anode for Li-/Na-ion batteries. Mater. Lett. 273, 127909.

[21]

Wu, M., Du, N., Wu, H., Liu, W., Chen, Y. F., Zhao, W. J., Yang, D. R. (2016). Cobalt oxide–tin core–shell nanowire arrays as high-performance electrodes for lithium-ion batteries. Energy Technol. 4, 1435–1439.

[22]

Zhao, R., Liang, Z. B., Zou, R. Q., Xu, Q. (2018). Metal-organic frameworks for batteries. Joule 2, 2235–2259.

[23]

Xu, Y. X., Li, Q., Pang, H. (2020). Recent advances in metal organic frameworks and their composites for batteries. Nano Futures 4, 032007.

[24]

Jiang, Y. C., Zhao, H. T., Yue, L. C., Liang, J., Li, T. S., Liu, Q., Luo, Y. L., Kong, X. Z., Lu, S. Y., Shi, X. F., et al. (2021). Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem. Commun. 122, 106881.

[25]

Liu, K. Y., Li, C., Yan, L. J., Fan, M. Q., Wu, Y. C., Meng, X. H., Ma, T. L. (2021). MOFs and their derivatives as Sn-based anode materials for lithium/sodium ion batteries. J. Mater. Chem. A 9, 27234–27251.

[26]

Guo, Z. W., He, Y. Q., Zhang, D. X., Lin, Y. F., Wen, Z. X., Zheng, Z. C., Chen, L., Zhang, N., Liu, X. H., Chen, G. (2022). Quasi solid-state electrolytes of Li2Sn2(bdc)3(H2O)x metal-organic frameworks for lithium metal battery. Electroanalysis 34, 1667–1672.

[27]

Kamakura, Y., Fujisawa, S., Takahashi, K., Toshima, H., Nakatani, Y., Yoshikawa, H., Saeki, A., Ogasawara, K., Tanaka, D. (2021). Redox-active tin metal–organic framework with a thiolate-based ligand. Inorg. Chem. 60, 12691–12695.

[28]

Wang, J., Polleux, J., Lim, J., Dunn, B. (2007). Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931.

[29]

Kresse, G., Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186.

[30]

Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.

[31]

Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Chem. J. Phys. 132, 154104–154110.

[32]

Wang, Y. F., Sun, X. L., Hu, J. H., Guo, Q., Zhang, P., Luo, X., Shen, B. X., Fu, Y. Q. (2023). A two-enzyme system in an amorphous metal–organic framework for the synthesis of D-phenyllactic acid. J. Mater. Chem. B 11, 4227–4236.

[33]

Fonseca, J., Gong, T. H., Jiao, L., Jiang, H. L. (2021). Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 9, 10562–10611.

[34]

Wu, N., Jia, T., Shi, Y. R., Yang, Y. J., Li, T. H., Li, F., Wang, Z. (2020). High-performance Sn-based metal-organic frameworks anode materials synthesized by flexible and controllable methods for lithium-ion batteries. Ionics 26, 1547–1553.

[35]

Xia, S. B., Yao, L. F., Guo, H., Shen, X., Liu, J. M., Cheng, F. X., Liu, J. J. (2019). Li+ intercalcation pseudocapacitance in Sn-based metal-organic framework for high capacity and ultra-stable Li ion storage. J. Power Sources 440, 227162.

[36]

Liu, J. W., Xie, D. X., Xu, X. F., Jiang, L. Z., Si, R., Shi, W., Cheng, P. (2021). Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage. Nat. Commun. 12, 3131.

[37]

Zhao, J. G., Zhou, H. Y., Hu, Z., Wu, Y. W., Jia, H., Liu, X. M. (2022). Sn-MOFs/G composite materials for long cycling performance lithium ion batteries. Rare Met. 41, 1504–1511.

[38]

Zhou, X. Y., Yu, Y. W., Yang, J., Wang, H., Jia, M., Tang, J. J. (2019). Cross-linking tin-based metal-organic frameworks with encapsulated silicon nanoparticles: high-performance anodes for lithium-ion batteries. ChemElectroChem 6, 2056–2063.

[39]

Lv, Z. R., Dong, W. J., Jia, B. Q., Zhang, S. N., Xie, M., Zhao, W., Huang, F. Q. (2021). Flexible yet robust framework of tin(II) oxide carbodiimide for reversible lithium storage. Chem. Eur. J. 27, 2717–2723.

[40]
Baumann, T. F., Kucheyev, S. O., Gash, A. E., Satcher, J. H. Jr. (2005). Facile synthesis of a crystalline, high-surface-area SnO2 Aerogel. Adv. Mater. 1546–1548.
DOI
[41]

Kucheyev, S. O., Baumann, T. F., Sterne, P. A., Wang, Y. M., van Buuren, T., Hamza, A. V., Terminello, L. J., Willey, T. M. (2005). Surface electronic states in three-dimensional SnO2 nanostructures. Phys. Rev. B 72, 035404.

[42]

Zhou, X. T., Zhou, J. G., Murphy, M. W., Ko, J. Y. P., Heigl, F., Regier, T., Blyth, R. I. R., Sham, T. K. (2008). The effect of the surface of SnO2 nanoribbons on their luminescence using X-ray absorption and luminescence spectroscopy. J. Chem. Phys. 128, 144703.

[43]

Sharma, A., Varshney, M., Shin, H. J., Chae, K. H., Won, S. O. (2016). X-ray absorption spectroscopy investigations on electronic structure and luminescence properties of Eu: SnO2-SnO nanocomposites. Curr. Appl. Phys. 16, 1342–1348.

[44]

Akita, T., Tabuchi, M., Nabeshima, Y., Tatsumi, K., Kohyama, M. (2014). Electron microscopy analysis of Ti-substituted Li2MnO3 positive electrode before and after carbothermal reduction. J. Power Sources 254, 39–47.

[45]

Raval, P. Y., Joshi, N. P., Pansara, P. R., Vasoya, N. H., Kumar, S., Dolia, S. N., Modi, K. B., Singhal, R. K. (2018). A Ti L3,2 - and K- edge XANES and EXAFS study on Fe3+-substituted CaCu3Ti4O12. Ceram. Int. 44, 20716–20722.

[46]

Frati, F., Hunault, M. O. J. Y., de Groot, F. M. F. (2020). Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120, 4056–4110.

[47]

Gao, M., Zhu, D. M., Zhang, X. M., Liu, Y., Gao, X. Y., Zhou, X. T., Wen, W. (2019). In situ studies of 30% Li-Doped Bi25FeO40 conversion type lithium battery electrodes. ACS Omega 4, 2344–2352.

[48]

Qiao, R. M., Chuang, Y. D., Yan, S. S., Yang, W. L. (2012). Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS One 7, e49182.

[49]

Shin, D. W., Choi, J. W., Choi, W. K., Cho, Y. S., Yoon, S. J. (2008). Improved cycleability of LiMn2O4-based thin films by Sn substitution. Appl. Phys. Lett. 93, 064101.

[50]

Li, Z. Q., Wen, J. Q., Cai, Y. Q., Lv, F. T., Zeng, X., Liu, Q., Masese, T., Zhang, C. X., Yang, X. S., Ma, Y. W., et al. (2023). Hydrated Bi-Ti-bimetal ethylene glycol: a new high-capacity and stable anode material for potassium-ion batteries. Adv. Funct. Mater. 33, 2300582.

[51]

Li, C., Hu, X. S., Hu, B. W. (2017). Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 253, 439–444.

[52]

Haidari, M. M., Kim, H., Kim, J. H., Park, M., Lee, H., Choi, J. S. (2020). Doping effect in graphene-graphene oxide interlayer. Sci. Rep. 10, 8258.

File
EMD-2023-0013_ESM.pdf (14 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 October 2023
Revised: 03 November 2023
Accepted: 07 November 2023
Published: 20 November 2023
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

This work was conducted under the auspices of the National Natural Science Foundation of China (52277219, 61974072, 52032005), the Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (GZR2022010024), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_0992). JKK is grateful for the financial support (FSU 2023-022, PD#8295) from Khalifa University. We also acknowledge the sXAS experiments support from the Shanghai Synchrotron Radiation Facility (BL07U).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return