Journal Home > Volume 1 , Issue 2

Prussian blue analogs (PBAs) are effective precatalysts for the oxygen evolution reaction (OER); however, the underlying mechanism of their electrochemical activation is still not well elucidated. In this study, we designed and constructed PBA-based precatalysts to determine the electrochemical activation mechanism and achieve high-efficiency OER. The PBAs undergo in situ electrochemical transformation to form the corresponding metal (oxy)hydroxides (M(O)OH) as the true OER catalyst. More importantly, the hexacyanoferrate ligands undergo repetitive interfacial coordination/etching with/from M(O)OH during the activation process. The distinct mechanism could achieve in situ Fe doping and enable defect incorporation. The defect-enriched Fe-NiOOH derived from a well-designed NiHCF/Ni(OH)2 precatalyst requires a low overpotential of 227 mV to reach a current density of 10 mA cm−2 and works stably at 130 mA cm−2 over 100 h. This study provides fundamental insights into the electrochemical activation mechanism for developing advanced precatalysts for OER.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Determining the electrochemical activation mechanism of Prussian blue analog precatalysts for a high-efficiency oxygen evolution reaction

Show Author's information Wei Hua1Huanhuan Sun1Yueying Li2Yu Zhang3( )Jian-Gan Wang1,2( )
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi’an 710072, China
New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810016, China
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Prussian blue analogs (PBAs) are effective precatalysts for the oxygen evolution reaction (OER); however, the underlying mechanism of their electrochemical activation is still not well elucidated. In this study, we designed and constructed PBA-based precatalysts to determine the electrochemical activation mechanism and achieve high-efficiency OER. The PBAs undergo in situ electrochemical transformation to form the corresponding metal (oxy)hydroxides (M(O)OH) as the true OER catalyst. More importantly, the hexacyanoferrate ligands undergo repetitive interfacial coordination/etching with/from M(O)OH during the activation process. The distinct mechanism could achieve in situ Fe doping and enable defect incorporation. The defect-enriched Fe-NiOOH derived from a well-designed NiHCF/Ni(OH)2 precatalyst requires a low overpotential of 227 mV to reach a current density of 10 mA cm−2 and works stably at 130 mA cm−2 over 100 h. This study provides fundamental insights into the electrochemical activation mechanism for developing advanced precatalysts for OER.

Keywords: oxygen evolution reaction, water splitting, Prussian blue analogs, electrochemical activation

References(49)

[1]

Guo, T. Q., Li, L. D., Wang, Z. C. (2022). Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 12, 2200827.

[2]

Huang, C. J., Xu, H. M., Shuai, T. Y., Zhan, Q. N., Zhang, Z. J., Li, G. R. (2023). A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B: Environ. 325, 122313.

[3]

Deng, L. M., Hung, S. F., Lin, Z. Y., Zhang, Y., Zhang, C. C., Hao, Y. X., Liu, S. Y., Kuo, C. H., Chen, H. Y., Peng, J., et al. (2023). Valence oscillation of Ru active sites for efficient and robust acidic water oxidation. Adv. Mater. 35, 2305939.

[4]

Hao, Y. X., Yu, D. S., Zhu, S. Q., Kuo, C. H., Chang, Y. M., Wang, L. Q., Chen, H. Y., Shao, M. H., Peng, S. J. (2023). Methanol upgrading coupled with hydrogen product at large current density promoted by strong interfacial interactions. Energy Environ. Sci. 16, 1100–1110.

[5]

Hao, Y. X., Hung, S. F., Zeng, W. J., Wang, Y., Zhang, C. C., Kuo, C. H., Wang, L. Q., Zhao, S., Zhang, Y., Chen, H. Y., et al. (2023). Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 145, 23659–23669.

[6]

Shen, Y., Zhou, Y. F., Wang, D., Wu, X., Li, J., Xi, J. Y. (2018). Nickel-copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv. Energy Mater. 8, 1701759.

[7]

Chen, M. X., Lu, S. L., Fu, X. Z., Luo, J. L. (2020). Core-shell structured NiFeSn@NiFe (oxy)hydroxide nanospheres from an electrochemical strategy for electrocatalytic oxygen evolution reaction. Adv. Sci. 7, 1903777.

[8]

Li, L., Cao, X. J., Huo, J. J., Qu, J. P., Chen, W. H., Liu, C. T., Zhao, Y. F., Liu, H., Wang, G. X. (2023). High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis. J. Energy Chem. 76, 195–213.

[9]

Han, J. Y., Guan, J. Q. (2022). Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 16, 1913–1966.

[10]

Dinh, K. N., Sun, Y. X., Pei, Z. X., Yuan, Z. W., Suwardi, A., Huang, Q. W., Liao, X. Z., Wang, Z. G., Chen, Y., Yan, Q. Y. (2020). Electronic modulation of nickel disulfide toward efficient water electrolysis. Small 16, 1905885.

[11]

Wang, J. G., Hua, W., Li, M. Y., Liu, H. Y., Shao, M. H., Wei, B. Q. (2018). Structurally engineered hyperbranched NiCoP arrays with superior electrocatalytic activities toward highly efficient overall water splitting. ACS Appl. Mater. Interfaces 10, 41237–41245.

[12]

Zou, X., Zhang, W., Zhou, X. Y., Song, K. X., Ge, X., Zheng, W. T. (2022). The surface of metal boride tinted by oxygen evolution reaction for enhanced water electrolysis. J. Energy Chem. 72, 509–515.

[13]

Chen, J. P., Ren, B. W., Cui, H., Wang, C. X. (2020). Constructing pure phase tungsten-based bimetallic carbide nanosheet as an efficient bifunctional electrocatalyst for overall water splitting. Small 16, 1907556.

[14]

Ding, J. T., Fan, T., Shen, K., Li, Y. W. (2021). Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation. Appl. Catal. B: Environ. 292, 120174.

[15]

Liang, J., Gao, X. T., Guo, B., Ding, Y., Yan, J. W., Guo, Z. X., Tse, E. C. M., Liu, J. X. (2021). Ferrocene-based metal–organic framework nanosheets as a robust oxygen evolution catalyst. Angew. Chem. Int. Ed. 60, 12770–12774.

[16]

Luo, R. P., Qian, Z. Y., Xing, L. X., Du, C. Y., Yin, G. P., Zhao, S. L., Du, L. (2021). Re-looking into the active moieties of metal X-ides (X- = Phosph-, Sulf-, Nitr-, and Carb-) toward oxygen evolution reaction. Adv. Funct. Mater. 31, 2102918.

[17]

Gao, L. K., Cui, X., Sewell, C. D., Li, J., Lin, Z. Q. (2021). Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 50, 8428–8469.

[18]

Xiao, X., Zhang, G. X., Xu, Y. X., Zhang, H. L., Guo, X. T., Guo, Y. T., Pang, H. (2019). A new strategy for the controllable growth of MOF@PBA architectures. J. Mater. Chem. A 7, 17266–17271.

[19]

Huang, J. W., Li, Y. Y., Zhang, Y. D., Rao, G. F., Wu, C. Y., Hu, Y., Wang, X. F., Lu, R. F., Li, Y. R., Xiong, J. (2019). Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew. Chem. Int. Ed. 58, 17458–17464.

[20]

Ding, H., Liu, H. F., Chu, W. S., Wu, C. Z., Xie, Y. (2021). Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121, 13174–13212.

[21]

Li, Y. Y., Du, X. C., Huang, J. W., Wu, C. Y., Sun, Y. H., Zou, G. F., Yang, C. T., Xiong, J. (2019). Recent progress on surface reconstruction of earth-abundant electrocatalysts for water oxidation. Small 15, 1901980.

[22]

Liu, S., Cheng, H., Xu, K., Ding, H., Zhou, J. Y., Liu, B. J., Chu, W. S., Wu, C. Z., Xie, Y. (2019). Dual modulation via electrochemical reduction activiation on electrocatalysts for enhanced oxygen evolution reaction. ACS Energy Lett. 4, 423–429.

[23]

Zhang, B. W., Jiang, K., Wang, H. T., Hu, S. (2019). Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett. 19, 530–537.

[24]

Wang, L. Q., Hao, Y. X., Deng, L. M., Hu, F., Zhao, S., Li, L. L., Peng, S. J. (2022). Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun. 13, 5785.

[25]

Qian, J. F., Wu, C., Cao, Y. L., Ma, Z. F., Huang, Y. H., Ai, X. P., Yang, H. X. (2018). Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619.

[26]

Yi, H. C., Qin, R. Z., Ding, S. X., Wang, Y. T., Li, S. N., Zhao, Q. H., Pan, F. (2021). Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 31, 2006970.

[27]

Qin, Z. G., Li, Y., Gu, N. (2018). Progress in applications of Prussian blue nanoparticles in biomedicine. Adv. Healthcare Mater. 7, 1800347.

[28]

Hedley, L., Porteous, L., Hutson, D., Robertson, N., Johansson, J. O. (2018). Electrochromic bilayers of Prussian blue and its Cr analogue. J. Mater. Chem. C 6, 512–517.

[29]

Ding, Y. F., Sun, H. H., Li, Z. H., Jia, C. M., Ding, X. G., Li, C., Wang, J. G., Li, Z. (2023). Galvanic-driven deposition of large-area Prussian blue films for flexible battery-type electrochromic devices. J. Mater. Chem. A 11, 2868–2875.

[30]

Hegner, F. S., Herraiz-Cardona, I., Cardenas-Morcoso, D., López, N., Galán-Mascarós, J. R., Gimenez, S. (2017). Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting. ACS Appl. Mater. Interfaces 9, 37671–37681.

[31]

Moss, B., Hegner, F. S., Corby, S., Selim, S., Francàs, L., López, N., Giménez, S., Galán-Mascarós, J. R., Durrant, J. R. (2019). Unraveling charge transfer in CoFe Prussian blue modified BiVO4 photoanodes. ACS Energy Lett. 4, 337–342.

[32]

Indra, A., Paik, U., Song, T. (2018). Boosting electrochemical water oxidation with metal hydroxide carbonate templated Prussian blue analogues. Angew. Chem. Int. Ed. 57, 1241–1245.

[33]

Su, X. Z., Wang, Y., Zhou, J., Gu, S. Q., Li, J., Zhang, S. (2018). Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 140, 11286–11292.

[34]

Zhang, W. X., Song, H., Cheng, Y., Liu, C., Wang, C. H., Khan, M. A. N., Zhang, H., Liu, J. Z., Yu, C. Z., Wang, L. J., et al. (2019). Core-shell Prussian blue analogs with compositional heterogeneity and open cages for oxygen evolution reaction. Adv. Sci. 6, 1801901.

[35]

Fu, R. R., Feng, C. H., Jiao, Q. Z., Ma, K. X., Ge, S. Y., Zhao, Y. (2023). Molybdate intercalated nickel-iron-layered double hydroxide derived Mo-doped nickel–iron phosphide nanoflowers for efficient oxygen evolution reaction. Energy Mater. Devices 1, 9370002.

[36]

Zhu, H. L., Jiang, R., Chen, X. Q., Chen, Y. G., Wang, L. Y. (2017). 3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution. Sci. Bull. 62, 1373–1379.

[37]

Feng, F., Chen, S. L., Zhao, S. Q., Zhang, W. L., Miao, Y. G., Che, H. Y., Liao, X. Z., Ma, Z. F. (2021). Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the inhibition of Mn ions dissolution for sodium-ion batteries. Chem. Eng. J. 411, 128518.

[38]

Ren, L. B., Wang, J. G., Liu, H. Y., Shao, M. H., Wei, B. Q. (2019). Metal-organic-framework-derived hollow polyhedrons of Prussian blue analogues for high power grid-scale energy storage. Electrochim. Acta 321, 134671.

[39]

Wang, J. G., Zhang, Z. Y., Zhang, X. Y., Yin, X. M., Li, X., Liu, X. R., Kang, F. Y., Wei, B. Q. (2017). Cation exchange formation of Prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647–653.

[40]

Chen, Z. L., Ha, Y., Jia, H. X., Yan, X. X., Chen, M., Liu, M., Wu, R. B. (2019). Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater. 9, 1803918.

[41]

Meng, C., Lin, M. C., Sun, X. C., Chen, X. D., Chen, X. M., Du, X. W., Zhou, Y. (2019). Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution. Chem. Commun. 55, 2904–2907.

[42]

Huang, H. J., Huang, A. M., Liu, D., Han, W. T., Kuo, C. H., Chen, H. Y., Li, L. L., Pan, H., Peng, S. J. (2023). Tailoring oxygen reduction reaction kinetics on perovskite oxides via oxygen vacancies for low-temperature and knittable zinc–air batteries. Adv. Mater. 35, 2303109.

[43]

Dionigi, F., Zeng, Z. H., Sinev, I., Merzdorf, T., Deshpande, S., Lopez, M. B., Kunze, S., Zegkinoglou, I., Sarodnik, H., Fan, D. X., et al. (2020). In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522.

[44]

Anantharaj, S., Kundu, S., Noda, S. (2021). “The Fe effect”: a review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 80, 105514.

[45]

Lee, S., Bai, L. C., Hu, X. L. (2020). Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew. Chem. Int. Ed. 59, 8072–8077.

[46]

Liu, X., Guo, R. T., Ni, K., Xia, F. J., Niu, C. J., Wen, B., Meng, J. S., Wu, P. J., Wu, J. S., Wu, X. J., et al. (2020). Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 32, 2001136.

[47]

Geng, S. K., Zheng, Y., Li, S. Q., Su, H., Zhao, X., Hu, J., Shu, H. B., Jaroniec, M., Chen, P., Liu, Q. H., et al. (2021). Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 6, 904–912.

[48]

Song, J. J., Wei, C., Huang, Z. F., Liu, C. T., Zeng, L., Wang, X., Xu, Z. J. (2020). A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214.

[49]

Yu, Z. Y., Duan, Y., Feng, X. Y., Yu, X. X., Gao, M. R., Yu, S. H. (2021). Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, 2007100.

File
EMD-2023-0014_ESM.pdf (9.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 December 2023
Revised: 15 January 2024
Accepted: 16 January 2024
Published: 24 January 2024
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

The work was sponsored by the National Natural Science Foundation of China (52272239), Fundamental Research Funds for the Central Universities (3102019JC005) and Key Research and Technological Achievements Transformation Plan Project of Inner Mongolia Autonomous Region (2023YFHH0063).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return