AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (29.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Superstructured carbon materials: design and energy applications

Debin Kong1,2,Wei Lv1,Ruliang Liu3Yan-Bing He1Dingcai Wu3Feng Li4Ruowen Fu3Quan-Hong Yang5Feiyu Kang1( )
Shenzhen Geim Graphene Center and Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Debin Kong and Wei Lv contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Carbon materials are key components in energy storage and conversion devices and most directly impact device performance. The need for advanced carbon materials has become more pressing with the increasing demand for high-performance energy conversion and storage facilities. Nonetheless, realizing significant performance improvements across devices remains challenging because of the difficulties in controlling irregularly organized microstructures and the specific carbon structures concerned. With the aim of realizing devisable structures, adjustable functions, and performance breakthroughs, this review proposes the concept of superstructured carbons. In fact, superstructured carbons are a category of carbon-based materials characterized by precisely built pores, networks, and interfaces. This unique category meets the particular functional demands of high-performance devices and exceeds the rigid structure of traditional carbons. In the context of these superstructured carbons, we present methods for realizing both custom-built structures and target-oriented functionalities. For specific energy-related reactions, we emphasize the targeted property-structure relationships in these well-defined superstructured carbons. Finally, future developments and practicability challenges of superstructured carbons are also proposed.

References

[1]

Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nat. Mater. 7, 845–854.

[2]

Guo, Y. G., Hu, J. S., Wan, L. J. (2008). Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887.

[3]

Wang, J. C., Yue, D. B., Li, M. C., Wang, H. J., Wang, J. B., Wang, C. R., Wang, H. J. (2023). Application of carbon nitride nanosheets for adsorption of various humic substances from aqueous solutions. Chem. Eng. J. 454, 140296.

[4]

Zhai, Y. P., Dou, Y. Q., Zhao, D. Y., Fulvio, P. F., Mayes, R. T., Dai, S. (2011). Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850.

[5]

Stepacheva, A. A., Markova, M. E., Lugovoy, Y. V., Kosivtsov, Y. Y., Matveeva, V. G., Sulman, M. G. (2023). Plant-biomass-derived carbon materials as catalyst support, a brief review. Catalysts 13, 655.

[6]

Lv, W., Li, Z. J., Deng, Y. Q., Yang, Q. H., Kang, F. Y. (2016). Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138.

[7]

Liu, Z. G., He, X. X., Zhao, J. H., Xu, C. M., Qiao, Y., Li, L., Chou, S. L. (2023). Carbon nanosphere synthesis and applications for rechargeable batteries. Chem. Commun. 59, 4257–4273.

[8]

Wang, G. P., Zhang, L., Zhang, J. J. (2012). A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828.

[9]

Liu, S. H., Li, J., Yan, X., Su, Q. F., Lu, Y. H., Qiu, J. S., Wang, Z. Y., Lin, X. D., Huang, J. L., Liu, R. L., et al. (2018). Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 30, 1706895.

[10]

Shi, Y., Wen, L., Pei, S. F., Wu, M. J., Li, F. (2019). Choice for graphene as conductive additive for cathode of lithium-ion batteries. J. Energy Chem. 30, 19–26.

[11]

Wang, J. J., Yin, G. P., Shao, Y. Y., Zhang, S., Wang, Z. B., Gao, Y. Z. (2007). Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 171, 331–339.

[12]

Han, G., Song, Y., Thirumalraj, B., Beak, M., Kádár, C., Gubicza, J., Nam, H. S., Kwon, K., Choe, H. (2023). Superior capacity in electric double-layer capacitors employing three-dimensional titanium foam electrodes. Metall. Mater. Trans. A 54, 3620–3629.

[13]

Zhang, L., Wang, Q., Xu, F. X., Wang, Z. Y. (2023). Insights into the evolution of chemical structure and pyrolysis reactivity of pvc-derived hydrochar during hydrothermal carbonization. RSC Adv. 13, 27212–27224.

[14]

Ko, T. H., Ku, W. S., Hu, C. H. (2001). Raman spectroscopic study of effect of steam and carbon dioxide activation on microstructure of polyacrylonitrile-based activated carbon fabrics. J. Appl. Polym. Sci. 81, 1090–1099.

[15]

Fong, H., Reneker, D. H. (2006). Investigation of the formation of carbon and graphite nanofiber from mesophase pitch nanofiber precursor. ACS Symp. Ser. 918, 285–299.

[16]

Li, Q., Liu, X. S., Tao, Y., Huang, J. X., Zhang, J., Yang, C. P., Zhang, Y. B., Zhang, S. W., Jia, Y. R., Lin, Q. W., et al. (2022). Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 9, nwac084.

[17]

Luo, W., Bommier, C., Jian, Z. L., Li, X., Carter, R., Vail, S., Lu, Y. H., Lee, J. J., Ji, X. L. (2015). Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces 7, 2626–2631.

[18]

Zhao, J. H., He, X. X., Lai, W. H., Yang, Z., Liu, X. H., Li, L., Qiao, Y., Xiao, Y., Li, L., Wu, X. Q., et al. (2023). Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries. Adv. Energy Mater. 13, 2300444.

[19]

Kawabuchi, Y., Kawano, S., Mochida, I. (1996). Molecular sieving selectivity of active carbons and active carbon fibers improved by chemical vapour deposition of benzene. Carbon 34, 711–717.

[20]

Wang, H. N., Zheng, Y. P., Kang, F. Y. (2003). Quantitative analysis of the pore structure of expanded graphite. J. Inorg. Mater. 18, 606–612.

[21]

Chen, X. Y., Sawut, N., Chen, K. A., Li, H., Zhang, J., Wang, Z., Yang, M., Tang, G., Ai, X. P., Yang, H. X., et al. (2023). Filling carbon: a microstructure-engineered hard carbon for efficient alkali metal ion storage. Energy Environ. Sci. 16, 4041–4053.

[22]

Chen, H., Sun, N., Wang, Y. X., Soomro, R. A., Xu, B. (2023). One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries. Energy Storage Mater. 56, 532–541.

[23]

Dou, X. W., Hasa, I., Saurel, D., Vaalma, C., Wu, L. M., Buchholz, D., Bresser, D., Komaba, S., Passerini, S. (2019). Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104.

[24]

Saurel, D., Segalini, J., Jauregui, M., Pendashteh, A., Daffos, B., Simon, P., Casas-Cabanas, M. (2019). A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage. Energy Storage Mater. 21, 162–173.

[25]

Liang, Y. R., Fu, R. W., Wu, D. C. (2013). Reactive Template-Induced Self-Assembly to Ordered Mesoporous Polymeric and Carbonaceous Materials. ACS nano 7, 1748–1754.

[26]

Han, J. W., Zhang, C., Kong, D. B., He, X. Z., Xiao, J., Chen, F. Q., Tao, Y., Wan, Y., Yang, Q. H. (2020). Flowable sulfur template induced fully interconnected pore structures in graphene artefacts towards high volumetric potassium storage. Nano Energy 72, 104729.

[27]

Joo, S. H., Jun, S., Ryoo, R. (2001). Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Micropor. Mesopor. Mater. 44–45, 153–158.

[28]

Chuenchom, L., Kraehnert, R., Smarsly, B. M. (2012). Recent progress in soft-templating of porous carbon materials. Soft Matter 8, 10801–10812.

[29]

Fang, Y., Gu, D., Zou, Y., Wu, Z. X., Li, F. Y., Che, R. C., Deng, Y. H., Tu, B., Zhao, D. Y. (2010). A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 49, 7987–7991.

[30]

Zhang, F. Q., Meng, Y., Gu, D., Yan, M., Chen, Z. X., Tu, B., Zhao, D. Y. (2006). An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem. Mater. 18, 5279–5288.

[31]

Chen, Y. Z., Wang, C. M., Wu, Z. Y., Xiong, Y. J., Xu, Q., Yu, S. H., Jiang, H. L. (2015). From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 27, 5010–5016.

[32]

Li, Z. H., Wu, D. C., Liang, Y. R., Fu, R. W., Matyjaszewski, K. (2014). Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J. Am. Chem. Soc. 136, 4805–4808.

[33]

Jeong, U., Kim, H., Ramesh, S., Dogan, N. A., Wongwilawan, S., Kang, S., Park, J., Cho, E. S., Yavuz, C. T. (2021). Rapid access to ordered mesoporous carbons for chemical hydrogen storage. Angew. Chem. Int. Ed. 60, 22478–22486.

[34]

Pan, F., Ni, K., Xu, T., Chen, H. C., Wang, Y. S., Gong, K., Liu, C., Li, X., Lin, M. L., Li, S. Y., et al. (2023). Long-range ordered porous carbons produced from C60. Nature 614, 95–101.

[35]

He, H. Y., Kong, D. B., Wang, B., Fu, W., Qiu, X. Y., Yang, Q. H., Zhi, L. J. (2016). Carbon-network-integrated SnSiOx+2 nanofiber sheathed by ultrathin graphitic carbon for highly reversible lithium storage. Adv. Energy Mater. 6, 1502495.

[36]

Huang, X., Qi, X. Y., Boey, F., Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev. 41, 666–686.

[37]

Shao, J. J., Lv, W., Yang, Q. H. (2014). Self-assembly of graphene oxide at interfaces. Adv. Mater. 26, 5586–5612.

[38]

Tao, Y., Kong, D. B., Zhang, C., Lv, W., Wang, M. X., Li, B. H., Huang, Z. H., Kang, F. Y., Yang, Q. H. (2014). Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon 69, 169–177.

[39]

Tao, Y., Xie, X. Y., Lv, W., Tang, D. M., Kong, D. B., Huang, Z. H., Nishihara, H., Ishii, T., Li, B. H., Golberg, D., et al. (2013). Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975.

[40]

Han, J. W., Kong, D. B., Lv, W., Tang, D. M., Han, D. L., Zhang, C., Liu, D. H., Xiao, Z. C., Zhang, X. H., Xiao, J., et al. (2018). Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9, 402.

[41]

Li, Z. J., Kong, D. B., Zhou, G. M., Wu, S. D., Lv, W., Luo, C., Shao, J. J., Li, B. H., Kang, F. Y., Yang, Q. H. (2017). Twin-functional graphene oxide: compacting with Fe2O3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Mater. 6, 98–103.

[42]

Tang, L. K., He, Y. B., Wang, C., Wang, S., Wagemaker, M., Li, B. H., Yang, Q. H., Kang, F. Y. (2017). High-density microporous Li4Ti5O12 microbars with superior rate performance for lithium-ion batteries. Adv. Sci. 4, 1600311.

[43]

Zhang, C., Lv, W., Tao, Y., Yang, Q. H. (2015). Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390–1403.

[44]

Zhang, J., Lv, W., Tao, Y., He, Y. B., Wang, D. W., You, C. H., Li, B. H., Kang, F. Y., Yang, Q. H. (2015). Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions. Energy Storage Mater. 1, 112–118.

[45]

Lv, R. T., Cui, T. X., Jun, M. S., Zhang, Q., Cao, A. Y., Su, D. S., Zhang, Z. J., Yoon, S. H., Miyawaki, J., Mochida, I., et al. (2011). Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv. Funct. Mater. 21, 999–1006.

[46]

Wang, H. B., Maiyalagan, T., Wang, X. (2012). Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794.

[47]

Zhou, G. M., Wang, D. W., Yin, L. C., Li, N., Li, F., Cheng, H. M. (2012). Oxygen bridges between nio nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223.

[48]

Tang, Z., Zhou, S. Y., Huang, Y. C., Wang, H., Zhang, R., Wang, Q., Sun, D., Tang, Y. F., Wang, H. Y. (2023). Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-Ion batteries: origins, solutions, and perspectives. Electrochem. Energy Rev. 6, 8.

[49]

Shi, Y. S., Yin, P. P., Li, J., Xu, X. Z., Jiang, Q. T., Li, J. Y., Sari, H. M. K., Wang, J. J., Li, W. B., Hu, J. T., et al. (2023). Ultra-high rate capability of in-situ anchoring FeF3 cathode onto double-enhanced conductive Fe/graphitic carbon for high energy density lithium-ion batteries. Nano Energy 108, 108181.

[50]

Lu, P. S., Wu, D. X., Chen, L. Q., Li, H., Wu, F. (2022). Air stability of solid-state sulfide batteries and electrolytes. Electrochem. Energy Rev. 5, 3.

[51]

Wu, Q. K., Nong, H. Y., Zheng, R. X., Zhang, R. J., Wang, J. W., Yang, L. S., Liu, B. L. (2023). Resolidified chalcogen precursors for high-quality 2D semiconductor growth. Angew. Chem. Int. Ed. 62, e202301501.

[52]

Pan, Y., Xin, Y. P., Li, Y. H., Xu, Z., Tang, C., Liu, X., Yin, Y. C., Zhang, J. C., Xu, F. G., Li, C., et al. (2023). Nitrogen-doped carbon cubosomes as an efficient electrocatalyst with high accessibility of internal active sites. ACS Nano 17, 23850–23860.

[53]

Tian,, H., Wang, N., Xu, F. G., Zhang, P. F., Hou, D., Mai, Y. Y., Feng, X. L. (2018). Nitrogen-doped carbon nanosheets and nanoflowers with holey mesopores for efficient oxygen reduction catalysis. J. Mater. Chem. A 6, 10354–10360.

[54]

Tian, H., Lin, Z. X., Xu, F. G., Zheng, J. X., Zhuang, X. D., Mai, Y. Y., Feng, X. L. (2016). Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblock copolymer micelles in solution. Small 12, 3155–3163.

[55]

Zhu, Y. W., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W. W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., et al. (2011). Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541.

[56]

Yang, X. W., Cheng, C., Wang, Y. F., Qiu, L., Li, D. (2013). Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537.

[57]

Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P. L. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763.

[58]

Li, H., Qi, C. S., Tao, Y., Liu, H. B., Wang, D. W., Li, F., Yang, Q. H., Cheng, H. M. (2019). Quantifying the volumetric performance metrics of supercapacitors. Adv. Energy Mater. 9, 1900079.

[59]

Yao, Y. S., Ge, D., Yu, Y., Zhang, Y., Du, C., Ye, H., Wan, L., Chen, J., Xie, M. J. (2023). Filling macro/mesoporosity of commercial activated carbon enables superior volumetric supercapacitor performances. Micropor. Mesopor. Mater. 350, 112446.

[60]

Xu, Y., Tao, Y., Zheng, X. Y., Ma, H. Y., Luo, J. Y., Kang, F. Y., Yang, Q. H. (2015). A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm-3. Adv. Mater. 27, 8082–8087.

[61]

Sun, H. T., Mei, L., Liang, J. F., Zhao, Z. P., Lee, C., Fei, H. L., Ding, M. N., Lau, J., Li, M. F., Wang, C., et al. (2017). Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604.

[62]

Liu, L. B., Yu, Y., Yan, C., Li, K., Zheng, Z. J. (2015). Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 6, 7260.

[63]

Li, H., Tao, Y., Zheng, X. Y., Luo, J. Y., Kang, F. Y., Cheng, H. M., Yang, Q. H. (2016). Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 9, 3135–3142.

[64]

Ma, H. Y., Geng, H. Y., Yao, B. W., Wu, M. M., Li, C., Zhang, M., Chi, F. Y., Qu, L. T. (2019). Highly ordered graphene solid: an efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability. ACS Nano 13, 9161–9170.

[65]

Li, Z. N., Gadipelli, S., Li, H. C., Howard, C. A., Brett, D. J. L., Shearing, P. R., Guo, Z. X., Parkin, I. P., Li, F. (2020). Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 5, 160–168.

[66]

Yu, X. L., Zhan, C. Z., Lv, R. T., Bai, Y., Lin, Y. X., Huang, Z. H., Shen, W. C., Qiu, X. P., Kang, F. Y. (2015). Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 15, 43–53.

[67]

Wang, R. R., Wu, R. B., Yan, X. X., Liu, D., Guo, P. F., Li, W., Pan, H. G. (2022). Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 32, 2200424.

[68]

Xiang, Y. Y., Lu, L. Q., Li, W. J., Yan, F., Wang, H., Zhao, Z. L., Li, J. S., Kottapalli, A. G. P., Pei, Y. T. (2023). Nitrogen-doped porous carbon nanofibers embedded with Cu/Cu3P heterostructures as multifunctional current collectors for stabilizing lithium anodes in lithium-sulfur batteries. Chem. Eng. J. 472, 145089.

[69]

Inagaki, M., Yang, Y., Kang, F. Y. (2012). Carbon nanofibers prepared via electrospinning. Adv. Mater. 24, 2547–2566.

[70]

Qin, X. Y., Zhang, H. R., Wu, J. X., Chu, X. D., He, Y. B., Han, C. P., Miao, C., Wang, S., Li, B. H., Kang, F. Y. (2015). Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon 87, 347–356.

[71]

Wang, J. G., Yang, Y., Kang, F. Y. (2015). Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries. Electrochim. Acta 168, 271–276.

[72]

Wang, J. G., Yang, Y., Huang, Z. H., Kang, F. Y. (2011). Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors. Electrochim. Acta 56, 9240–9247.

[73]

Nan, D., Huang, Z. H., Lv, R. T., Yang, L., Wang, J. G., Shen, W. C., Lin, Y. X., Yu, X. L., Ye, L., Sun, H. Y., et al. (2014). Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J. Mater. Chem. A 2, 19678–19684.

[74]

Zhang, B., Yu, Y., Xu, Z. L., Abouali, S., Akbari, M., He, Y. B., Kang, F. Y., Kim, J. K. (2014). Correlation between atomic structure and electrochemical performance of anodes made from electrospun carbon nanofiber films. Adv. Energy Mater. 4, 1301448.

[75]

Wang, J. G., Yang, Y., Huang, Z. H., Kang, F. Y. (2012). Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. J. Mater. Chem. 22, 16943–16949.

[76]

Yu, Y., Gu, L., Zhu, C. B., van Aken, P. A., Maier, J. (2009). Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance li-based batteries. J. Am. Chem. Soc. 131, 15984–15985.

[77]

Dong, L. B., Xu, C. J., Li, Y., Huang, Z. H., Kang, F. Y., Yang, Q. H., Zhao, X. (2016). Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A 4, 4659–4685.

[78]

Dong, L. B., Xu, C. J., Li, Y., Pan, Z. Z., Liang, G. M., Zhou, E. L., Kang, F. Y., Yang, Q. H. (2016). Breathable and wearable energy storage based on highly flexible paper electrodes. Adv. Mater. 28, 9313–9319.

[79]

Dong, L. B., Liang, G. M., Xu, C. J., Liu, W. B., Pan, Z. Z., Zhou, E. L., Kang, F. Y., Yang, Q. H. (2017). Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34, 242–248.

[80]

Chen, L., Yuan, Y. H., Orenstein, R., Yanilmaz, M., He, J., Liu, J., Liu, Y., Zhang, X. W. (2023). Carbon materials dedicate to bendable supports for flexible lithium-sulfur batteries. Energy Storage Mater. 60, 102817.

[81]

Dong, L. B., Xu, C. J., Li, Y., Wu, C. L., Jiang, B. Z., Yang, Q., Zhou, E. L., Kang, F. Y., Yang, Q. H. (2016). Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 28, 1675–1681.

[82]

Yuan, Y. F., Lu, J. (2019). Demanding energy from carbon. Carbon Energy 1, 8–12.

[83]

Dong, Y. F., Xu, J. L., Chen, M. Y., Guo, Y. W., Zhou, G. D., Li, N., Zhou, S., Wong, C. P. (2020). Self-assembled NaV6O15 flower-like microstructures for high-capacity and long-life sodium-ion battery cathode. Nano Energy 68, 104357.

[84]

Li, M., Lu, J., Chen, Z. W., Amine, K. (2018). 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561.

[85]

Li, Y. Q., Lu, Y. X., Adelhelm, P., Titirici, M. M., Hu, Y. S. (2019). Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687.

[86]

Kundu, D., Talaie, E., Duffort, V., Nazar, L. F. (2015). The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448.

[87]

Zhang, J., Wang, D. W., Lv, W., Qin, L., Niu, S. Z., Zhang, S. W., Cao, T. F., Kang, F. Y., Yang, Q. H. (2018). Ethers illume sodium-based battery chemistry: uniqueness, surprise, and challenges. Adv. Energy Mater. 8, 1801361.

[88]

Wen, Y., He, K., Zhu, Y. J., Han, F. D., Xu, Y. H., Matsuda, I., Ishii, Y., Cumings, J., Wang, C. S. (2014). Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033.

[89]

Alvin, S., Cahyadi, H. S., Hwang, J., Chang, W., Kwak, S. K., Kim, J. (2020). Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10, 2000283.

[90]

Zhang, W. D., Shen, Z. Y., Li, S. Y., Fan, L., Wang, X. Y., Chen, F., Zang, X. X., Wu, T., Ma, F. Y., Lu, Y. Y. (2020). Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: toward practical Li-metal full batteries. Adv. Funct. Mater. 30, 2003800.

[91]

Tian, Y., An, Y. L., Zhang, B. (2023). Approaching microsized alloy anodes via solid electrolyte interphase design for advanced rechargeable batteries. Adv. Energy Mater. 13, 2302119.

[92]

Zhang, S. W., Lv, W., Luo, C., You, C. H., Zhang, J., Pan, Z. Z., Kang, F. Y., Yang, Q. H. (2016). Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater. 3, 18–23.

[93]

Li, Y. M., Mu, L. Q., Hu, Y. S., Li, H., Chen, L. Q., Huang, X. J. (2016). Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2, 139–145.

[94]

Zhang, H. R., Qin, X. Y., Wu, J. X., He, Y. B., Du, H. D., Li, B. H., Kang, F. Y. (2015). Electrospun core-shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. J. Mater. Chem. A 3, 7112–7120.

[95]

Zhang, H. W., Zhou, L., Noonan, O., Martin, D. J., Whittaker, A. K., Yu, C. Z. (2014). Tailoring the void size of iron oxide@carbon yolk-shell structure for optimized lithium storage. Adv. Funct. Mater. 24, 4337–4342.

[96]

Han, J. W., Tang, D. M., Kong, D. B., Chen, F. Q., Xiao, J., Zhao, Z. Y., Pan, S. Y., Wu, S. C., Yang, Q. H. (2020). A thick yet dense silicon anode with enhanced interface stability in lithium storage evidenced by in situ TEM observations. Sci. Bull. 65, 1563–1569.

[97]

Ma, D. T., Li, Y. L., Mi, H. W., Luo, S., Zhang, P. X., Lin, Z. Q., Li, J. Q., Zhang, H. (2018). Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57, 8901–8905.

[98]

Liu, Y. T., Liu, S., Li, G. R., Gao, X. P. (2021). Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 33, 2003955.

[99]

Pang, Q., Liang, X., Kwok, C. Y., Kulisch, J., Nazar, L. F. (2017). A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7, 1601630.

[100]

Peng, H. J., Huang, J. Q., Cheng, X. B., Zhang, Q. (2017). Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260.

[101]

Ren, W. C., Ma, W., Zhang, S. F., Tang, B. T. (2018). Improved rate performance of lithium sulfur batteries by in-situ anchoring of lithium iodide in carbon/sulfur cathode. Chem. Eng. J. 341, 441–449.

[102]

Bruce, P. G., Freunberger, S. A., Hardwick, L. J., Tarascon, J. M. (2012). Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29.

[103]

Ji, X. L., Lee, K. T., Nazar, L. F. (2009). A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506.

[104]

Tang, C., Zhang, Q., Zhao, M. Q., Huang, J. Q., Cheng, X. B., Tian, G. L., Peng, H. J., Wei, F. (2014). Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 26, 6100–6105.

[105]

Li, Z., Zhang, J. T., Chen, Y. M., Li, J., Lou, X. W. (2015). Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 6, 8850.

[106]

Han, X. G., Xu, Y. H., Chen, X. Y., Chen, Y. C., Weadock, N., Wan, J. Y., Zhu, H. L., Liu, Y. L., Li, H. Q., Rubloff, G., et al. (2013). Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy 2, 1197–1206.

[107]

Huang, Y. Z., Lin, L., Zhang, C. K., Liu, L., Li, Y. K., Qiao, Z. S., Lin, J., Wei, Q. L., Wang, L. S., Xie, Q. S., et al. (2022). Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 9, 2106004.

[108]

Seh, Z. W., Sun, Y. M., Zhang, Q. F., Cui, Y. (2016). Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634.

[109]

Yang, Y., Zheng, G. Y., Cui, Y. (2013). Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032.

[110]

Fang, R. P., Zhao, S. Y., Sun, Z. H., Wang, D. W., Cheng, H. M., Li, F. (2017). More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823.

[111]

Xue, W. J., Shi, Z., Suo, L. M., Wang, C., Wang, Z. Q., Wang, H. Z., So, K. P., Maurano, A., Yu, D. W., Chen, Y. M., et al. (2019). Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382.

[112]

Wang, N. N., Zhang, X., Ju, Z. Y., Wang, Y. X., Du, Y., Bai, Z. C., Dou, S. X., Yu, C. H. (2021). Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519.

[113]

Li, H., Tao, Y., Zhang, C., Liu, D. H., Luo, J. Y., Fan, W. C., Xu, Y., Li, Y. Z., You, C. H., Pan, Z. Z., et al. (2018). Dense graphene monolith for high volumetric energy density Li-S batteries. Adv. Energy Mater. 8, 1703438.

[114]

Niu, S. Z., Zhou, G. M., Lv, W., Shi, H. F., Luo, C., He, Y. B., Li, B. H., Yang, Q. H., Kang, F. Y. (2016). Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries. Carbon 109, 1–6.

[115]

Yin, Y. X., Xin, S., Guo, Y. G., Wan, L. J. (2013). Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200.

[116]

Wang, T., He, J. R., Cheng, X. B., Zhu, J., Lu, B. A., Wu, Y. P. (2023). Strategies toward high-loading lithium-sulfur batteries. ACS Energy Lett. 8, 116–150.

[117]

Niu, S. Z., Lv, W., Zhang, C., Shi, Y. T., Zhao, J. F., Li, B. H., Yang, Q. H., Kang, F. Y. (2015). One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries. J. Power Sources 295, 182–189.

[118]

Yu, X. L., Deng, J. J., Lv, R. T., Huang, Z. H., Li, B. H., Kang, F. Y. (2019). A compact 3D interconnected sulfur cathode for high-energy, high-power and long-life lithium-sulfur batteries. Energy Storage Mater. 20, 14–23.

[119]

Zhao, C., Xu, G. L., Yu, Z., Zhang, L. C., Hwang, I., Mo, Y. X., Ren, Y. X., Cheng, L., Sun, C. J., Ren, Y., et al. (2021). Author Correction: a high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 224.

[120]

Zhou, T. H., Zhao, Y., Zhou, G. M., Lv, W., Sun, P. J., Kang, F. Y., Li, B. H., Yang, Q. H. (2017). An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy 39, 291–296.

[121]

Zhou, T. H., Lv, W., Li, J., Zhou, G. M., Zhao, Y., Fan, S. X., Liu, B. L., Li, B. H., Kang, F. Y., Yang, Q. H. (2017). Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 10, 1694–1703.

[122]

Wang, R. C., Luo, C., Wang, T. S., Zhou, G. M., Deng, Y. Q., He, Y. B., Zhang, Q. F., Kang, F. Y., Lv, W., Yang, Q. H. (2020). Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries. Adv. Mater. 32, 2000315.

[123]

Zheng, C., Niu, S. Z., Lv, W., Zhou, G. M., Li, J., Fan, S. X., Deng, Y. Q., Pan, Z. Z., Li, B. H., Kang, F. Y., et al. (2017). Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 33, 306–312.

[124]

Shi, H. F., Sun, Z. H., Lv, W., Wang, S. G., Shi, Y., Zhang, Y. B., Xiao, S. J., Yang, H. C., Yang, Q. H., Li, F. (2019). Necklace-like MoC sulfiphilic sites embedded in interconnected carbon networks for Li-S batteries with high sulfur loading. J. Mater. Chem. A 7, 11298–11304.

[125]

Zhang, Z., Luo, D., Li, G. R., Gao, R., Li, M., Li, S., Zhao, L., Dou, H. Z., Wen, G. B., Sy, S., et al. (2020). Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries. Matter 3, 920–934.

[126]

Hu, C. G., Paul, R., Dai, Q. B., Dai, L. M. (2021). Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 50, 11785–11843.

[127]

Hu, C. G., Dai, L. M. (2019). Doping of carbon materials for metal-free electrocatalysis. Adv Mater. 31, 1804672.

[128]

Singh, S. K., Takeyasu, K., Nakamura, J. (2019). Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv. Mater. 31, 1804297.

[129]

Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S., Hashimoto, K. (2013). Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4, 2390.

[130]

Cheng, W. R., Zhao, X., Su, H., Tang, F. M., Che, W., Zhang, H., Liu, Q. H. (2019). Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122.

[131]

Duan, X. C., Xu, J. T., Wei, Z. X., Ma, J. M., Guo, S. J., Wang, S. Y., Liu, H. K., Dou, S. X. (2017). Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 29, 1701784.

[132]

Yang, S. L., Peng, L., Huang, P. P., Wang, X. S., Sun, Y. B., Cao, C. Y., Song, W. G. (2016). Nitrogen, phosphorus, and sulfur Co-doped hollow carbon shell as superior metal-free catalyst for selective oxidation of aromatic alkanes. Angew. Chem. Int. Ed. 128, 4084–4088.

[133]

Hu, C. G., Dai, L. M. (2016). Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 55, 11736–11758.

[134]

Liu, Z. J., Zhao, Z. H., Wang, Y. Y., Dou, S., Yan, D. F., Liu, D. D., Xia, Z. H., Wang, S. Y. (2017). In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 29, 1606207.

[135]

Ren, Q., Wang, H., Lu, X. F., Tong, Y. X., Li, G. R. (2018). Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 5, 1700515.

[136]

Wu, Y. P., Tian, J. W., Liu, S., Li, B., Zhao, J., Ma, L. F., Li, D. S., Lan, Y. Q., Bu, X. H. (2019). Bi-microporous metal-organic frameworks with cubane [M4(OH)4] (M=Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angew. Chem. Int. Ed. 58, 12185–12189.

[137]

Zhao, X. J., Pachfule, P., Li, S., Langenhahn, T., Ye, M. Y., Schlesiger, C., Praetz, S., Schmidt, J., Thomas, A. (2019). Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141, 6623–6630.

[138]

Gao, Y., Xiao, Z. C., Kong, D. B., Iqbal, R., Yang, Q. H., Zhi, L. J. (2019). N,P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy 64, 103879.

[139]

Lu, Q., Wu, H., Zheng, X. R., Chen, Y. N., Rogach, A. L., Han, X. P., Deng, Y. D., Hu, W. B. (2021). Encapsulating cobalt nanoparticles in interconnected N-doped hollow carbon nanofibers with enriched Co-N-C moiety for enhanced oxygen electrocatalysis in Zn-air batteries. Adv. Sci. 8, 2101438.

[140]

Tang, C., Wang, H. F., Chen, X., Li, B. Q., Hou, T. Z., Zhang, B. S., Zhang, Q., Titirici, M. M., Wei, F. (2016). Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28, 6845–6851.

[141]

Wang, T. Y., Xie, H., Chen, M. J., D'Aloia, A., Cho, J., Wu, G., Li, Q. (2017). Precious metal-free approach to hydrogen electrocatalysis for energy conversion: from mechanism understanding to catalyst design. Nano Energy 42, 69–89.

[142]

Wang, W., Shang, L., Chang, G. J., Yan, C. Y., Shi, R., Zhao, Y. X., Waterhouse, G. I. N., Yang, D. J., Zhang, T. R. (2019). Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 31, 1808276.

[143]

Lei, Y., Pakhira, S., Fujisawa, K., Wang, X. Y., Iyiola, O. O., López, N. P., Elías, A. L., Rajukumar, L. P., Zhou, C. J., Kabius, B., et al. (2017). Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1-xS2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 11, 5103–5112.

[144]

Wang, X. Y., Gan, X., Hu, T., Fujisawa, K., Lei, Y., Lin, Z., Xu, B., Huang, Z. H., Kang, F. Y., Terrones, M., et al. (2017). Noble-metal-free hybrid membranes for highly efficient hydrogen evolution. Adv. Mater. 29, 1603617.

[145]

Li, J. J., Xia, W., Tang, J., Gao, Y., Jiang, C., Jia, Y. N., Chen, T., Hou, Z. F., Qi, R., Jiang, D. et al. (2022). Metal-organic framework-derived graphene mesh: a robust scaffold for highly exposed Fe–N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 144, 9280–9291.

[146]

Cheng, W. R., Lu, X. F., Luan, D. Y., Lou, X. W. (2020). NiMn-based bimetal-organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew. Chem. Int. Ed. 59, 18234–18239.

[147]

Yin, Y. Q., Wang, J., Li, T., Hill, J. P., Rowan, A., Sugahara, Y., Yamauchi, Y. (2021). Nanoarchitecturing carbon nanodot arrays on zeolitic imidazolate framework-derived cobalt–nitrogen-doped carbon nanoflakes toward oxygen reduction electrocatalysts. ACS Nano 15, 13240–13248.

[148]

Weng, Z., Liu, W., Yin, L. C., Fang, R. P., Li, M., Altman, E. I., Fan, Q., Li, F., Cheng, H. M., Wang, H. L. (2015). Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 15, 7704–7710.

[149]

Wei, W., Tao, Y., Lv, W., Su, F. Y., Ke, L., Li, J., Wang, D. W., Li, B. H., Kang, F. Y., Yang, Q. H. (2014). Unusual high oxygen reduction performance in all-carbon electrocatalysts. Sci. Rep. 4, 6289.

[150]

Mustonen, K., Hussain, A., Hofer, C., Monazam, M. R. A., Mirzayev, R., Elibol, K., Laiho, P., Mangler, C., Jiang, H., Susi, T., et al. (2018). Atomic-scale deformations at the interface of a mixed-dimensional van der Waals heterostructure. ACS Nano 12, 8512–8519.

Energy Materials and Devices
Article number: 9370017
Cite this article:
Kong D, Lv W, Liu R, et al. Superstructured carbon materials: design and energy applications. Energy Materials and Devices, 2023, 1(2): 9370017. https://doi.org/10.26599/EMD.2023.9370017

5144

Views

1003

Downloads

26

Crossref

Altmetrics

Received: 25 December 2023
Revised: 20 January 2024
Accepted: 21 January 2024
Published: 30 January 2024
© The Author(s) 2023. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return