Journal Home > Volume 1 , Issue 2

SiO is a promising anode material for next-generation lithium-ion batteries (LIBs) with high-energy density. However, the passivation of silicon oxide in SiO remains challenging to reduce its irreversible reactions and volume expansion during cycling. In this work, a scalable approach is proposed to synthesize calcium silicate/nanosilicon composites (pSi@CaO) by transforming the SiO2 in disproportionate SiO into calcium silicate at 1000 ℃. The bulk-distributed calcium silicate in pSi@CaO can effectively inhibit nanosilicon expansion and enhance ionic transfer. The optimized pSi@20%CaO anode demonstrates a low electrode expansion of 12.3% upon lithiation and 7.6% upon lithiation after 50 cycles. It also exhibits excellent electrochemical stability, delivering a specific capacity of 808 mAh g−1 at 50 mA g−1 with an initial Columbic efficiency of 72% and maintaining 82% capacity after 500 cycles at 1 A g−1. The feasible CaO passivation strategy proposed in this work is expected to promote practical applications of Si-based anodes in high-performance LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Calcium silicate composited nano-Si anode with low expansion and high performance for lithium-ion batteries

Show Author's information Yixuan GuoTong ZhouJiayu PengHenghui XuLihong Xue( )Wuxing Zhang( )
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Yixuan Guo and Tong Zhou contributed equally to this work.

Abstract

SiO is a promising anode material for next-generation lithium-ion batteries (LIBs) with high-energy density. However, the passivation of silicon oxide in SiO remains challenging to reduce its irreversible reactions and volume expansion during cycling. In this work, a scalable approach is proposed to synthesize calcium silicate/nanosilicon composites (pSi@CaO) by transforming the SiO2 in disproportionate SiO into calcium silicate at 1000 ℃. The bulk-distributed calcium silicate in pSi@CaO can effectively inhibit nanosilicon expansion and enhance ionic transfer. The optimized pSi@20%CaO anode demonstrates a low electrode expansion of 12.3% upon lithiation and 7.6% upon lithiation after 50 cycles. It also exhibits excellent electrochemical stability, delivering a specific capacity of 808 mAh g−1 at 50 mA g−1 with an initial Columbic efficiency of 72% and maintaining 82% capacity after 500 cycles at 1 A g−1. The feasible CaO passivation strategy proposed in this work is expected to promote practical applications of Si-based anodes in high-performance LIBs.

Keywords: anode, lithium-ion batteries, silicon monoxide, calcium silicate, volume expansion

References(35)

[1]

Turcheniuk, K., Bondarev, D., Singhal, V., Yushin, G. (2018). Ten years left to redesign lithium-ion batteries. Nature 559, 467–470.

[2]

Liu, X., Liu, H. T., Cao, Y. H., Wu, X. C., Shan, Z. Q. (2023). Silicon nanoparticles embedded in chemical-expanded graphite through electrostatic attraction for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces. 15, 9457–9464.

[3]

Winter, M., Barnett, B., Xu, K. (2018). Before Li ion batteries. Chem. Rev. 118, 11433–11456.

[4]

Xie, J., Lu, Y. C. (2020). A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499.

[5]

Quilty, C. D., Wu, D. R., Li, W. Z., Bock, D. C., Wang, L., Housel, L. M., Abraham, A., Takeuchi, K. J., Marschilok, A. C., Takeuchi, E. S. (2023). Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chem. Rev. 123, 1327–1363.

[6]

Shi, Q. T., Zhou, J. H., Ullah, S., Yang, X. Q., Tokarska, K., Trzebicka, B., Ta, H. Q., Rümmeli, M. H. (2021). A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 34, 735–754.

[7]

Warrier, P., Koh, C. A. (2016). Silicon clathrates for lithium ion batteries: a perspective. Appl. Phys. Rev. 3, 040805.

[8]

Yan, X., Fu, Z. F., Zhou, L. T., Hu, L. Y., Xia, Y., Zhang, W. K., Gan, Y. P., Zhang, J., He, X. P., Huang, H. (2023). New chemical synthesis strategy to construct a silicon/carbon nanotubes/carbon-integrated composite with outstanding lithium storage capability. ACS Appl. Mater. Interfaces 15, 17986–17993.

[9]

Hyun, J. I., Kong, K., Choi, S., Na, M., Kim, K. B., Kim, W. T., Kim, D. H. (2021). Synthesis of porosity controllable nanoporous silicon with a self-coated nickel layer for lithium-ion batteries. J. Power Sources 495, 229802.

[10]

Wang, J. Y., Liao, L., Lee, H. R., Shi, F. F., Huang, W., Zhao, J., Pei, A., Tang, J., Zheng, X. L., Chen, W., et al. (2019). Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61, 404–410.

[11]

Yang, Z. W., Qiu, L., Zhang, M. K., Zhong, Y. J., Zhong, B. H., Song, Y., Wang, G. K., Liu, Y. X., Wu, Z. G., Guo, X. D. (2021). Carbon dioxide solid-phase embedding reaction of silicon-carbon nanoporous composites for lithium-ion batteries. Chem. Eng. J. 423, 130127.

[12]

Yang, Z. W., Wu, C., Li, S., Qiu, L., Yang, Z. G., Zhong, Y. J., Zhong, B. H., Song, Y., Wang, G. K., Liu, Y. X., et al. (2022). A unique structure of highly stable interphase and self-consistent stress distribution radial-gradient porous for silicon anode. Adv. Funct. Mater. 32, 2107897.

[13]

Kim, M., Harvey, S. P., Huey, Z., Han, S. D., Jiang, C. S., Son, S. B., Yang, Z. Z., Bloom, I. (2023). A new mechanism of stabilizing SEI of Si anode driven by crosstalk behavior and its potential for developing high performance Si-based batteries. Energy Storage Mater. 55, 436–444.

[14]

Li, Y., Jin, B. Y., Wang, K. Y., Song, L. N., Ren, L. H., Hou, Y., Gao, X., Zhan, X. L., Zhang, Q. H. (2022). Coordinatively-intertwined dual anionic polysaccharides as binder with 3D network conducive for stable SEI formation in advanced silicon-based anodes. Chem. Eng. J. 429, 132235.

[15]

Zhang, H., Yang, Y., Ren, D. S., Wang, L., He, X. M. (2021). Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Storage Mater. 36, 147–170.

[16]

Cheng, Z. Z., Chen, Y., Shi, L., Wu, M. F., Wen, Z. Y. (2023). Long-lifespan lithium metal batteries enabled by a hybrid artificial solid electrolyte interface layer. ACS Appl. Mater. Interfaces. 15, 10585–10592.

[17]

Cao, Z., Zheng, X. Y., Huang, W. B., Wang, Y., Qu, Q. T., Huang, Y. H., Zheng, H. H. (2021). Molecular design of a multifunctional binder via grafting and crosslinking for high performance silicon anodes. J. Mater. Chem. A 9, 8416–8424.

[18]

Han, L., Liu, T. F., Sheng, O. W., Liu, Y. J., Wang, Y., Nai, J. W., Zhang, L., Tao, X. Y. (2021). Undervalued roles of binder in modulating solid electrolyte interphase formation of silicon-based anode materials. ACS Appl. Mater. Interfaces 13, 45139–45148.

[19]

Liu, X. H., Zhong, L., Huang, S., Mao, S. X., Zhu, T., Huang, J. Y. (2012). Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531.

[20]

He, S. Y., Cho, C. S., Chen, J. K., Li, C. C. (2021). Good structural stability of Si anodes achieved through dispersant addition and use of carbon fabric as conductive framework. J. Electrochem. Soc. 168, 060517.

[21]

Tian, K., Song, Z. C., Zhou, Q., Guan, C. H., Lu, M., Zhang, M. S., Wei, D., Li, X. D. (2023). Silicon-carbon anode with high interfacial stability by a facile thermal reaction involving alkaline nitrogenous carbon source for lithium ion batteries. J Energy Storage 72, 108401.

[22]

Ulvestad, A., Skare, M. O., Foss, C. E., Krogsæter, H., Reichstein, J. F., Preston, T. J., Mæhlen, J. P., Andersen, H. F., Koposov, A. Y. (2021). Stoichiometry-controlled reversible lithiation capacity in nanostructured silicon nitrides enabled by in situ conversion reaction. ACS Nano 15, 16777–16787.

[23]

Park, S., Sung, J., Chae, S., Hong, J., Lee, T., Lee, Y., Cha, H., Kim, S. Y., Cho, J. (2020). Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14, 11548–11557.

[24]

Sun, C. L., Xu, X., Gui, C. L., Chen, F. Z., Wang, Y. A., Chen, S. Z., Shao, M. H., Wang, J. H. (2023). High-quality epitaxial n doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage. Nano-Micro Lett. 15, 202.

[25]

Liu, Z. H., Yu, Q., Zhao, Y. L., He, R. H., Xu, M., Feng, S. H., Li, S. D., Zhou, L., Mai, L. Q. (2019). Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48, 285–309.

[26]

Li, H. Y., Li, H. D., Yang, Z. W., Yang, L. W., Gong, J. Y., Liu, Y. X., Wang, G. K., Zheng, Z., Zhong, B. H., Song, Y., et al. (2021). SiOx anode: from fundamental mechanism toward industrial application. Small 17, 2102641.

[27]

Huang, B., Huang, T., Wan, L. Y., Yu, A. S. (2021). Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder. ACS Sustain. Chem. Eng. 9, 648–657.

[28]

Jia, T. Q., Zhong, G., Lv, Y., Li, N. R., Liu, Y. R., Yu, X. L., Zou, J. S., Chen, Z., Peng, L. L., Kang, F. Y., et al. (2023). Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery. Green Energy Environ. 8, 1325–1340.

[29]

Chen, S. M., Wang, Z., Zhang, M., Shi, X. Z., Wang, L., An, W. F., Li, Z. K., Pan, F., Yang, L. Y. (2023). Practical evaluation of prelithiation strategies for next-generation lithium-ion batteries. Carbon Energy 5, e323.

[30]

Zhang, Y., Guo, G. N., Chen, C., Jiao, Y. C., Li, T. T., Chen, X., Yang, Y. C., Yang, D., Dong, A. G. (2019). An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes. J. Power Sources 426, 116–123.

[31]

Raza, A., Jung, J. Y., Lee, C. H., Kim, B. G., Choi, J. H., Park, M. S., Lee, S. M. (2021). Swelling-controlled double-layered SiOx/Mg2SiO4/SiOx composite with enhanced initial coulombic efficiency for lithium-ion battery. ACS Appl. Mater. Interfaces 13, 7161–7170.

[32]

Bian, C. C., Fu, R. S., Shi, Z. P., Ji, J. J., Zhang, J., Chen, W., Zhou, X. F., Shi, S. Q., Liu, Z. P. (2022). Mg2SiO4/Si-coated disproportionated SiO composite anodes with high initial coulombic efficiency for lithium ion batteries. ACS Appl. Mater. Interfaces 14, 15337–15345.

[33]

Wang, J. Y., Wang, X. L., Liu, B. N., Lu, H., Chu, G., Liu, J., Guo, Y. G., Yu, X. Q., Luo, F., Ren, Y., et al. (2020). Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy 78, 105101.

[34]

Xu, S., Hou, X. D., Wang, D. N., Zuin, L., Zhou, J. G., Hou, Y., Mann, M. (2022). Insights into the effect of heat treatment and carbon coating on the electrochemical behaviors of SiO anodes for Li-ion batteries. Adv. Energy Mater. 12, 2200127.

[35]

Li, Y. F., Li, Q. M., Chai, J. L., Wang, Y. T., Du, J. K., Chen, Z. Y., Rui, Y. C., Jiang, L., Tang, B. H. J. (2023). Si-based anode lithium-ion batteries: a comprehensive review of recent progress. ACS Mater. Lett. 5, 2948–2970.

File
EMD-2023-0019_ESM.pdf (5.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 December 2023
Revised: 20 January 2024
Accepted: 21 January 2024
Published: 30 January 2024
Issue date: December 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFB0100302). The authors thank the State Key Laboratory of Materials Processing and Die & Mould Technology of HUST and the Analytical and Testing Centre of HUST for XRD, SEM, and other measurements.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return