Journal Home > Volume 2 , Issue 1

Antimony selenide (Sb2Se3) semiconducting material possesses a band gap of 1.05–1.2 eV and has been widely applied in single-junction solar cells. Based on its band gap, Sb2Se3 can also be used as the bottom cell absorber material in tandem solar cells. More importantly, Sb2Se3 solar cells exhibit excellent stability with nontoxic compositional elements. The band gap of organic–inorganic hybrid perovskite is tunable over a wide range. In this work, we demonstrate for the first time a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response. By adjusting the thickness of the transparent electrode layer of the top cell, the wide-band-gap perovskite top solar cell achieves an efficiency of 17.88%, while the optimized antimony selenide bottom cell delivers a power conversion efficiency of 7.85% by introducing a double electron transport layer. Finally, the four-terminal tandem solar cell achieves an impressive efficiency exceeding 20%. This work provides a new tandem device structure and demonstrates that antimony selenide is a promising absorber material for bottom cell applications in tandem solar cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sb2Se3 as a bottom cell material for efficient perovskite/Sb2Se3 tandem solar cells

Show Author's information Zhiyuan Cai1,Jia Sun2,Huiling Cai1Yuehao Gu1Rongfeng Tang1Changfei Zhu1Paifeng Luo2( )Tao Chen1( )
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230026, China

Zhiyuan Cai and Jia Sun contributed equally to this work.

Abstract

Antimony selenide (Sb2Se3) semiconducting material possesses a band gap of 1.05–1.2 eV and has been widely applied in single-junction solar cells. Based on its band gap, Sb2Se3 can also be used as the bottom cell absorber material in tandem solar cells. More importantly, Sb2Se3 solar cells exhibit excellent stability with nontoxic compositional elements. The band gap of organic–inorganic hybrid perovskite is tunable over a wide range. In this work, we demonstrate for the first time a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response. By adjusting the thickness of the transparent electrode layer of the top cell, the wide-band-gap perovskite top solar cell achieves an efficiency of 17.88%, while the optimized antimony selenide bottom cell delivers a power conversion efficiency of 7.85% by introducing a double electron transport layer. Finally, the four-terminal tandem solar cell achieves an impressive efficiency exceeding 20%. This work provides a new tandem device structure and demonstrates that antimony selenide is a promising absorber material for bottom cell applications in tandem solar cells.

Keywords: perovskite, transparent conducting electrode, tandem solar cells, four-terminal, antimony selenide

References(24)

[1]

Green, M. A., Dunlop, E. D., Siefer, G., Yoshita, M., Kopidakis, N., Bothe, K., Hao, X. J. (2023). Solar cell efficiency tables (Version 61). Prog. Photovoltaics: Res. Appl. 31, 3–16.

[2]

Shockley, W., Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519.

[3]

De Vos, A. (1980). Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D: Appl. Phys. 13, 839–846.

[4]

Leijtens, T., Bush, K. A., Prasanna, R., McGehee, M. D. (2018). Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838.

[5]

Chen, C., Li, K. H., Tang, J. (2022). Ten years of Sb2Se3 thin film solar cells. Solar RRL 6, 2200094.

[6]

Cai, H. L., Cao, R., Gao, J. X., Qian, C., Che, B., Tang, R. F., Zhu, C. F., Chen, T. (2022). Interfacial engineering towards enhanced photovoltaic performance of Sb2Se3 solar cell. Adv. Funct. Mater. 32, 2208243.

[7]

Yeom, K. M., Kim, S. U., Woo, M. Y., Noh, J. H., Im, S. H. (2020). Recent progress in metal halide perovskite-based tandem solar cells. Adv. Mater. 32, 2002228.

[8]
Jin, Y. B., Feng, H. P., Fang, Z., Yang, L., Liu, K. K., Deng, B. R., Chen, J. F., Chen, X. L., Zhong, Y. W., Yang, J. X., et al. (2023). Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer. Nano Res. in press. https://doi.org/10.1007/s12274-023-5975-5
DOI
[9]

Kim, J. H., Seok, H. J., Seo, H. J., Seong, T. Y., Heo, J. H., Lim, S. H., Ahn, K. J., Kim, H. K. (2018). Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale 10, 20587–20598.

[10]

Dkhissi, Y., Huang, F. Z., Rubanov, S., Xiao, M. D., Bach, U., Spiccia, L., Caruso, R. A., Cheng, Y. B. (2015). Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J. Power Sources 278, 325–331.

[11]

Roldán-Carmona, C., Malinkiewicz, O., Soriano, A., Espallargas, G. M., Garcia, A., Reinecke, P., Kroyer, T., Dar, M. I., Nazeeruddin, M. K., Bolink, H. J. (2014). Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7, 994–997.

[12]

Schultes, M., Helder, T., Ahlswede, E., Aygüler, M. F., Jackson, P., Paetel, S., Schwenzer, J. A., Hossain, I. M., Paetzold, U. W., Powalla, M. (2019). Sputtered transparent electrodes (IO:H and IZO) with low parasitic near-infrared absorption for perovskite–Cu(In, Ga)Se2 tandem solar cells. ACS Appl. Energy Mater. 2, 7823–7831.

[13]

Xu, W. Z., Gao, Y., He, M., Chen, S. Y., Fu, H. Y., Wei, G. D. (2023). Functional polymer passivating FA0.85PEA0.15SnI3 for efficient and stable lead-free perovskite solar cells. Nano Res. 16, 481–488.

[14]

Zhang, X., Zhang, H., Li, S. L., Xiao, L. G., Zhang, S. W., Han, B., Kang, J. J., Zhou, H. Q. (2023). Development and application of blade-coating technique in organic solar cells. Nano Res. 16, 11571–11588.

[15]

Liu, X. X., Zhang, J. J., Tang, L. T., Gong, J. B., Li, W., Ma, Z. Y., Tu, Z. X., Li, Y. Y., Li, R. M., Hu, X. Z., et al. (2023). Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: highly efficient sub-cells and their bandgap matching. Energy Environ. Sci. 16, 5029–5042.

[16]

Guchhait, A., Dewi, H. A., Leow, S. W., Wang, H., Han, G. F., Suhaimi, F. B., Mhaisalkar, S., Wong, L. H., Mathews, N. (2017). Over 20% efficient CIGS–perovskite tandem solar cells. ACS Energy Lett. 2, 807–812.

[17]

Kamat, P. V. (2018). Hybrid perovskites for multijunction tandem solar cells and solar fuels. A virtual issue. ACS Energy Lett. 3, 28–29.

[18]

Zhou, Y., Wang, L., Chen, S. Y., Qin, S. K., Liu, X. S., Chen, J., Xue, D. J., Luo, M., Cao, Y. Z., Cheng, Y. B., et al. (2015). Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9, 409–415.

[19]

Liu, X. S., Chen, J., Luo, M., Leng, M. Y., Xia, Z., Zhou, Y., Qin, S. K., Xue, D. J., Lv, L., Huang, H., et al. (2014). Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interfaces 6, 10687–10695.

[20]

Wen, X. X., Chen, C., Lu, S. C., Li, K. H., Kondrotas, R., Zhao, Y., Chen, W. H., Gao, L., Wang, C., Zhang, J., et al. (2018). Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 9, 2179.

[21]

Mavlonov, A., Razykov, T., Raziq, F., Gan, J. T., Chantana, J., Kawano, Y., Nishimura, T., Wei, H. M., Zakutayev, A., Minemoto, T., et al. (2020). A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 201, 227–246.

[22]

Mamta, Singh, Y., Maurya, K. K., Singh, V. N. (2021). A review on properties, applications, and deposition techniques of antimony selenide. Sol. Energy Mater. Sol. Cells 230, 111223.

[23]

Zeng, K., Xue, D. J., Tang, J. (2016). Antimony selenide thin-film solar cells. Semicond. Sci. Technol. 31, 063001.

[24]

Jiang, C. H., Yao, J. S., Huang, P., Tang, R. F., Wang, X. M., Lei, X. Y., Zeng, H. L., Chang, S., Zhong, H. Z., Yao, H. B., et al. (2020). Perovskite quantum dots exhibiting strong hole extraction capability for efficient inorganic thin film solar cells. Cell Rep. Phys. Sci. 1, 100001.

File
EMD-2024-0006_ESM.pdf (898.3 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 January 2024
Revised: 20 February 2024
Accepted: 20 February 2024
Published: 04 March 2024
Issue date: March 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFA0405600); National Natural Science Foundation of China (Grant No. 22275180); School-Local Cooperation Industrial Innovation Guidance Fund Key Project, Hefei University of Technology, China (Grant No. JZ2022YDZJ0087); Wuhu Major Engineering Application Project, China (Grant No. W2022JSKF0499); and Collaborative Innovation Program of Hefei Science Center, CAS.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return