AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Deposition technologies of perovskite layer enabling large-area photovoltaic modules

Run-Jun Jin1Yan-Hui Lou2( )Zhao-Kui Wang1( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
Show Author Information

Graphical Abstract

Abstract

The commercialization of perovskite solar cells (PSCs) is expected. However, the selection of fabrication technology remains unclear, especially with different technologies corresponding to different area ranges. This study presents a summary of recent technologies related to device area and photovoltaic parameters for certain area ranges. Blade-coating, slot-die coating, and bar-coating technologies are suitable for PSCs whose area is greater than or equal to 100 cm2. Meanwhile, meniscus-coating, spray-coating, and roll-to-roll technologies are appropriate for flexible large-area PSCs. The definition of large area has been updated to one above 10 cm2. In conclusion, we provide a perspective for future large-area perovskite photovoltaics.

Electronic Supplementary Material

Download File(s)
EMD20240030_ESM.pdf (3.9 MB)

References

[1]

Chen, Y. C., Zhang, L. R., Zhang, Y. Z., Gao, H. L., Yan, H. (2018). Large-area perovskite solar cells-a review of recent progress and issues. RSC Adv. 8, 10489–10508.

[2]

Zhao, X. F., Tan, Z. K. (2020). Large-area near-infrared perovskite light-emitting diodes. Nat. Photonics 14, 215–218.

[3]

Li, D. Y., Zhang, D. Y., Lim, K. S., Hu, Y., Rong, Y. G., Mei, A. Y., Park, N. G., Han, H. W. (2021). A review on scaling up perovskite solar cells. Adv. Funct. Mater. 31, 2008621.

[4]

Zhao, Y., Ma, F., Gao, F., Yin, Z. G., Zhang, X. W., You, J. B. (2020). Research progress in large-area perovskite solar cells. Photonics Res. 8, A1–A15.

[5]

Chu, S. L., Chen, W. J., Fang, Z. B., Xiao, X., Liu, Y., Chen, J., Huang, J. S., Xiao, Z. G. (2021). Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun. 12, 147.

[6]

Xiao, Y. F., Zuo, C. T., Zhong, J. X., Wu, W. Q., Shen, L., Ding, L. M. (2021). Large-area blade-coated solar cells: advances and perspectives. Adv. Energy Mater. 11, 2100378.

[7]

Parida, B., Singh, A., Kalathil Soopy, A. K., Sangaraju, S., Sundaray, M., Mishra, S., Liu, S. Z., Najar, A. (2022). Recent developments in upscalable printing techniques for perovskite solar cells. Adv. Sci. 9, 2200308.

[8]

Wang, H. F., Qin, Z. X., Miao, Y. F., Zhao, Y. X. (2022). Recent progress in large-area perovskite photovoltaic modules. Tran. Tianjin Univ. 28, 323–340.

[9]

Jiang, J. K., You, J. X., Liu, S. F., Xi, J. (2023). Scale-up solutions of 2D perovskite photovoltaics: insights of multiscale structures. ACS Energy Lett. 9, 17–29.

[10]
Jin, R. J., Lou, Y. H., Huang, L., Wang, K. L., Chen, C. H., Chen, J., Hu, F., Wang, Z. K. (2024). Photochemical shield enabling highly efficient perovskite photovoltaics. Adv. Mater. in press. https://doi.org/10.1002/adma.202313154
[11]

Chen, C. H., Su, Z. H., Lou, Y. H., Yu, Y. J., Wang, K. L., Liu, G. L., Shi, Y. R., Chen, J., Cao, J. J., Zhang, L., et al. (2022). Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Adv. Mater. 34, 2200320.

[12]

Jin, R. J., Lou, Y. H., Wang, Z. K. (2023). Doping strategies for promising organic–inorganic halide perovskites. Small 19, 2206581.

[13]

Wang, Z. K., Lou, Y. H., Naka, S., Okada, H. (2011). Bias and temperature dependent charge transport in solution-processed small molecular mixed single layer organic light emitting devices. Appl. Phys. Lett. 98, 063302.

[14]

Lou, Y. H., Xu, M. F., Zhang, L., Wang, Z. K., Naka, S., Okada, H., Liao, L. S. (2013). Origin of enhanced electrical and conducting properties in pentacene films doped by molybdenum trioxide. Org. Electron. 14, 2698–2704.

[15]

Ding, L., Sun, Y. Q., Chen, H., Zu, F. S., Wang, Z. K., Liao, L. S. (2014). A novel intermediate connector with improved charge generation and separation for large-area tandem white organic lighting devices. J. Mater. Chem. C 2, 10403–10408.

[16]

Zhang, L., Zhang, Y. X., Hu, Y., Shi, X. B., Jiang, Z. Q., Wang, Z. K., Liao, L. S. (2016). Highly efficient blue phosphorescent organic light-emitting diodes employing a host material with small bandgap. ACS Appl. Mater. Interfaces 8, 16186–16191.

[17]

Shi, Y. L., Liang, F., Hu, Y., Wang, X. D., Wang, Z. K., Liao, L. S. (2017). High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer. J. Mater. Chem. C 5, 5372–5377.

[18]

Li, M., Zuo, W. W., Wang, Q., Wang, K. L., Zhuo, M. P., Köbler, H., Halbig, C. E., Eigler, S., Yang, Y. G., Gao, X. Y., et al. (2020). Ultrathin nanosheets of oxo-functionalized graphene inhibit the ion migration in perovskite solar cells. Adv. Energy Mater. 10, 1902653.

[19]

Dong, C., Li, X. M., Ma, C., Yang, W. F., Cao, J. J., Igbari, F., Wang, Z. K., Liao, L. S. (2021). Lycopene-based bionic membrane for stable perovskite photovoltaics. Adv. Funct. Mater. 31, 2011242.

[20]

Hamukwaya, S. L., Hao, H. Y., Zhao, Z. Y., Dong, J. J., Zhong, T. T., Xing, J., Hao, L., Mashingaidze, M. M. (2022). A review of recent developments in preparation methods for large-area perovskite solar cells. Coatings 12, 252.

[21]

Lee, J. H., Kim, B. S., Park, J., Lee, J. W., Kim, K. (2023). Opportunities and challenges for perovskite solar cells based on vacuum thermal evaporation. Adv. Mater. Technol. 8, 2200928.

[22]

Yang, J. X., Lim, E. L., Tan, L., Wei, Z. H. (2022). Ink engineering in blade-coating large-area perovskite solar cells. Adv. Energy Mater. 12, 2200975.

[23]

Guo, S. S., Liu, K. K., Rao, L., Hu, X. T., Chen, Y. W. (2023). Preparation of perovskite solar cells in the air: degradation mechanism and prospects on large-area fabrication. Chin. J. Chem. 41, 599–617.

[24]

Du, P. P., Li, J. H., Wang, L., Sun, L., Wang, X., Xu, X., Yang, L. B., Pang, J. C., Liang, W. X., Luo, J. J., et al. (2021). Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12, 4751.

[25]

Bishop, J. E., Read, C. D., Smith, J. A., Routledge, T. J., Lidzey, D. G. (2020). Fully spray-coated triple-cation perovskite solar cells. Sci. Rep. 10, 6610.

[26]

Bishop, J. E., Smith, J. A., Lidzey, D. G. (2020). Development of spray-coated perovskite solar cells. ACS Appl. Mater. Interfaces 12, 48237–48245.

[27]

Chiang, C. H., Nazeeruddin, M. K., Grätzel, M., Wu, C. G. (2017). The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci. 10, 808–817.

[28]

Fang, Z. H., Wang, L. Y., Mu, X. J., Chen, B., Xiong, Q., Wang, W. D., Ding, J. X., Gao, P., Wu, Y. Y., Cao, J. (2021). Grain boundary engineering with self-assembled porphyrin supramolecules for highly efficient large-area perovskite photovoltaics. J. Am. Chem. Soc. 143, 18989–18996.

[29]

Huang, H. H., Liu, Q. H., Tsai, H., Shrestha, S., Su, L. Y., Chen, P. T., Chen, Y. T., Yang, T. A., Lu, H., Chuang, C. H., et al. (2021). A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule 5, 958–974.

[30]

Liu, C., Yang, Y., Rakstys, K., Mahata, A., Franckevicius, M., Mosconi, E., Skackauskaite, R., Ding, B., Brooks, K. G., Usiobo, O. J., et al. (2021). Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394.

[31]

Xiong, Q., Wang, C., Zhou, Q., Wang, L. Y., Wang, X. B., Yang, L. K., Ding, J. X., Chen, C. C., Wu, J. H., Li, X., et al. (2022). Rear interface engineering to suppress migration of iodide ions for efficient perovskite solar cells with minimized hysteresis. Adv. Funct. Mater. 32, 2107823.

[32]

Zhu, J., Park, S., Gong, O. Y., Sohn, C., Li, Z. J., Zhang, Z. R., Jo, B., Kim, W., Han, G. S., Kim, D. H., et al. (2021). Formamidine disulfide oxidant as a localised electron scavenger for >20% perovskite solar cell modules. Energy Environ. Sci. 14, 4903–4914.

[33]

Castriotta, L. A., Zendehdel, M., Yaghoobi Nia, N., Leonardi, E., Löffler, M., Paci, B., Generosi, A., Rellinghaus, B., Di Carlo, A. (2022). Reducing losses in perovskite large area solar technology: laser design optimization for highly efficient modules and minipanels. Adv. Energy Mater. 12, 2103420.

[34]

Chen, W. J., Liu, S., Li, Q. Q., Cheng, Q. R., He, B. S., Hu, Z. J., Shen, Y. X., Chen, H. Y., Xu, G. Y., Ou, X. M., et al. (2022). High-polarizability organic ferroelectric materials doping for enhancing the built-in electric field of perovskite solar cells realizing efficiency over 24%. Adv. Mater. 34, 2110482.

[35]

Gao, Y. Y., Liu, C., Xie, Y., Guo, R. L., Zhong, X. Q., Ju, H. X., Qin, L., Jia, P., Wu, S. H., Schropp, R. E. I., et al. (2022). Can nanosecond laser achieve high-performance perovskite solar modules with aperture area efficiency over 21%? Adv. Energy Mater. 12, 2202287.

[36]

Gong, O. Y., Han, G. S., Lee, S., Seo, M. K., Sohn, C., Yoon, G. W., Jang, J., Lee, J. M., Choi, J. H., Lee, D. K., et al. (2022). Van der Waals force-assisted heat-transfer engineering for overcoming limited efficiency of flexible perovskite solar cells. ACS Energy Lett. 7, 2893–2903.

[37]

Han, C. X., Wang, Y., Yuan, J. B., Sun, J. G., Zhang, X. L., Cazorla, C., Wu, X. X., Wu, Z. A., Shi, J. W., Guo, J. J., et al. (2022). Tailoring phase alignment and interfaces via polyelectrolyte anchoring enables large-area 2D perovskite solar cells. Angew. Chem. Int. Ed. 61, e202205111.

[38]

Jeong, M., Choi, I. W., Yim, K., Jeong, S., Kim, M., Choi, S. J., Cho, Y., An, J. H., Kim, H. B., Jo, Y., et al. (2022). Large-area perovskite solar cells employing spiro-Naph hole transport material. Nat. Photonics 16, 119–125.

[39]

Kim, M., Jeong, J., Lu, H. Z., Lee, T. K., Eickemeyer, F. T., Liu, Y. H., Choi, I. W., Choi, S. J., Jo, Y., Kim, H. B., et al. (2022). Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306.

[40]

Liu, X. H., Chen, M., Zhang, Y., Xia, J. X., Yin, J. Z., Li, M., Brooks, K. G., Hu, R. Y., Gao, X. X., Kim, Y. H., et al. (2022). High-efficiency perovskite photovoltaic modules achieved via cesium doping. Chem. Eng. J. 431, 133713.

[41]

Peng, J., Kremer, F., Walter, D., Wu, Y. L., Ji, Y., Xiang, J., Liu, W. Z., Duong, T., Shen, H. P., Lu, T., et al. (2022). Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578.

[42]

Shen, Z. C., Han, Q. F., Luo, X. H., Shen, Y. Z., Wang, T., Zhang, C. Y., Wang, Y. B., Chen, H., Yang, X. D., Zhang, Y. Q., et al. (2022). Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy Environ. Sci. 15, 1078–1085.

[43]

Vesce, L., Stefanelli, M., Castriotta, L. A., Hadipour, A., Lammar, S., Yang, B. W., Suo, J. J., Aernouts, T., Hagfeldt, A., Di Carlo, A. (2022). Hysteresis-free planar perovskite solar module with 19.1% efficiency by interfacial defects passivation. Sol. RRL 6, 2101095.

[44]

Xu, C., Zuo, L. J., Hang, P. J., Guo, X. W., Pan, Y. W., Zhou, G. Q., Chen, T. Y., Niu, B. F., Xu, X. Q., Hong, Z. J., et al. (2022). Synergistic effects of bithiophene ammonium salt for high-performance perovskite solar cells. J. Mater. Chem. A 10, 9971–9980.

[45]

Zhu, J., Qian, Y. T., Li, Z. J., Gong, O. Y., An, Z. F., Liu, Q., Choi, J. H., Guo, H., Yoo, P. J., Kim, D. H., et al. (2022). Defect healing in FAPb(I1-xBrx)3 perovskites: multifunctional fluorinated sulfonate surfactant anchoring enables >21% modules with improved operation stability. Adv. Energy Mater. 12, 2200632.

[46]

Zhu, X. Y., Dong, H., Chen, J. B., Xu, J., Li, Z. J., Yuan, F., Dai, J. F., Jiao, B., Hou, X., Xi, J., et al. (2022). Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. Adv. Funct. Mater. 32, 2202408.

[47]

Bansal, N. K., Ghosh, S., Porwal, S., Singh, T. (2024). Engineering of antisolvent dripping for large-area perovskite solar cell fabrication under air ambient conditions. J. Mater. Sci. Mater. Electron. 35, 1.

[48]

Chiang, C. H., Wu, C. G. (2023). Large-area perovskite film prepared by new FFASE method for stable solar modules having high efficiency under both outdoor and indoor light harvesting. Adv. Sci. 10, 2205967.

[49]

He, J. C., Sheng, W. P., Yang, J., Zhong, Y., Su, Y., Tan, L. C., Chen, Y. W. (2023). Omnidirectional diffusion of organic amine salts assisted by ordered arrays in porous lead iodide for two-step deposited large-area perovskite solar cells. Energy Environ. Sci. 16, 629–640.

[50]

He, R., Wang, W. H., Yi, Z. J., Lang, F., Chen, C., Luo, J. C., Zhu, J. W., Thiesbrummel, J., Shah, S., Wei, K., et al. (2023). Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86.

[51]
Liu, D. C., Chen, C., Wang, X. Z., Sun, X. H., Zhang, B. Q., Zhao, Q. Q., Li, Z. P., Shao, Z. P., Wang, X., Cui, G. L., et al. (2023). Enhanced quasi-fermi level splitting of perovskite solar cells by universal dual-functional polymer. Adv. Mater. in press. https://doi.org/10.1002/adma.202310962
[52]

Liu, X. P., Ding, B., Han, M. Y., Yang, Z. H., Chen, J. L., Shi, P. J., Xue, X. Y., Ghadari, R., Zhang, X. F., Wang, R., et al. (2023). Extending the π-conjugated system in spiro-type hole transport material enhances the efficiency and stability of perovskite solar modules. Angew. Chem. Int. Ed. 62, e202304350.

[53]

Miao, Y. F., Ren, M., Chen, Y. T., Wang, H. F., Chen, H. R., Liu, X. M., Wang, T. F., Zhao, Y. X. (2023). Green solvent enabled scalable processing of perovskite solar cells with high efficiency. Nat. Sustainability 6, 1465–1473.

[54]

Ochoa-Martinez, E., Bijani-Chiquero, S., del Valle Martínez de Yuso, M., Sarkar, S., Diaz-Perez, H., Mejia-Castellanos, R., Eickemeyer, F., Grätzel, M., Steiner, U., Milić, J. V. (2023). Nanocrystalline flash annealed nickel oxide for large area perovskite solar cells. Adv. Sci. 10, 2302549.

[55]

Tan, L. G., Zhou, J. J., Zhao, X., Wang, S. Y., Li, M. H., Jiang, C. F., Li, H., Zhang, Y., Ye, Y. R., Tress, W., et al. (2023). Combined vacuum evaporation and solution process for high-efficiency large-area perovskite solar cells with exceptional reproducibility. Adv. Mater. 35, 2205027.

[56]
Tian, R. J., Liu, C., Meng, Y. Y., Wang, Y. H., Cao, R. K., Tang, B. C., Walsh, D., Do, H., Wu, H. D., Wang, K., et al. (2023). Nucleation regulation and mesoscopic dielectric screening in α-FAPbI3. Adv. Mater. in press. https://doi.org/10.1002/adma.202309998
[57]

Wang, K. L., Li, M., Lou, Y. H., Chen, J., Shi, Y. R., Chen, C. H., Zhou, Y. H., Wang, Z. K., Liao, L. S. (2023). Aniline sulfonic acid induced uniform perovskite film for large-scale photovoltaics. Adv. Energy Mater. 13, 2203471.

[58]

Wang, T., Wan, Z., Min, X., Chen, R., Li, Y. K., Yang, J. B., Pu, X. Y., Chen, H., He, X. L., Cao, Q., et al. (2024). Synergistic defect healing and device encapsulation via structure regulation by silicone polymer enables durable inverted perovskite photovoltaics with high efficiency. Adv. Energy Mater. 14, 2302552.

[59]

Xu, L. G., Ji, H. D., Qiu, W., Wang, X., Liu, Y. H., Li, Y., Li, J., Zhang, X., Zhang, D. Q., Wang, J. X., et al. (2023). Enhanced resonance for facilitated modulation of large-area perovskite films with stable photovoltaics. Adv. Mater. 35, 2301752.

[60]

Yang, H. Y., Xu, T. T., Chen, W. Y., Wu, Y. M., Guo, X. M., Shen, Y. X., Ding, C. Q., Chen, X. N., Chen, H. Y., Ding, J. Y., et al. (2023). Iodonium initiators: paving the air-free oxidation of spiro-OMeTAD for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 63, e202316183.

[61]

Ye, F., Tian, T., Su, J., Jiang, R. X., Li, J., Jin, C. K., Tong, J. H., Bai, S., Huang, F. Z., Müller-Buschbaum, P., et al. (2023). Tailoring low-dimensional perovskites passivation for efficient two-step-processed FAPbI3 solar cells and modules. Adv. Energy Mater. 14, 2302775.

[62]

Song, Z. L., Gao, Y. P., Zou, Y., Zhang, H., Wang, R., Chen, Y., Chen, Y. S., Liu, Y. S. (2024). Single-crystal-assisted in situ phase reconstruction enables efficient and stable 2D/3D perovskite solar cells. J. Am. Chem. Soc. 146, 1657–1666.

[63]

Sun, A. X., Tian, C. C., Zhuang, R. S., Chen, C., Zheng, Y. T., Wu, X. Y., Tang, C., Liu, Y., Li, Z. H., Ouyang, B. L., et al. (2024). High open-circuit voltage (1.197 V) in large-area (1 cm2) inverted perovskite solar cell via interface planarization and highly polar self-assembled monolayer. Adv. Energy Mater. 14, 2303941.

[64]

Zheng, Y. T., Li, Y. R., Zhuang, R. S., Wu, X. Y., Tian, C. C., Sun, A. X., Chen, C., Guo, Y. S., Hua, Y., Meng, K., et al. (2024). Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy Environ. Sci. 17, 1153–1162.

[65]

Li, N. X., Niu, X. X., Li, L., Wang, H., Huang, Z. J., Zhang, Y., Chen, Y. H., Zhang, X., Zhu, C., Zai, H. C., et al. (2021). Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567.

[66]

Deng, Y., Van Brackle, C. H., Dai, X. Z., Zhao, J. J., Chen, B., Huang, J. S. (2019). Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 5, eaax7537.

[67]

Matteocci, F., Vesce, L., Kosasih, F. U., Castriotta, L. A., Cacovich, S., Palma, A. L., Divitini, G., Ducati, C., Di Carlo, A. (2019). Fabrication and morphological characterization of high-efficiency blade-coated perovskite solar modules. ACS Appl. Mater. Interfaces 11, 25195–25204.

[68]

Deng, Y. H., Ni, Z. Y., Palmstrom, A. F., Zhao, J. J., Xu, S., Van Brackle, C. H., Xiao, X., Zhu, K., Huang, J. S. (2020). Reduced self-doping of perovskites induced by short annealing for efficient solar modules. Joule 4, 1949–1960.

[69]

Castriotta, L. A., Matteocci, F., Vesce, L., Cinà, L., Agresti, A., Pescetelli, S., Ronconi, A., Löffler, M., Stylianakis, M. M., Di Giacomo, F., et al. (2021). Air-processed infrared-annealed printed methylammonium-free perovskite solar cells and modules incorporating potassium-doped graphene oxide as an interlayer. ACS Appl. Mater. Interfaces 13, 11741–11754.

[70]

Chen, R. H., Wang, Y. K., Nie, S. Q., Shen, H., Hui, Y., Peng, J., Wu, B. H., Yin, J., Li, J., Zheng, N. F. (2021). Sulfonate-assisted surface iodide management for high-performance perovskite solar cells and modules. J. Am. Chem. Soc. 143, 10624–10632.

[71]

Chen, S. S., Dai, X. Z., Xu, S., Jiao, H. Y., Zhao, L., Huang, J. S. (2021). Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907.

[72]

Chen, S. S., Deng, Y. H., Xiao, X., Xu, S., Rudd, P. N., Huang, J. S. (2021). Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat. Sustainability 4, 636–643.

[73]

Chen, S. S., Xiao, X., Gu, H. Y., Huang, J. S. (2021). Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci Adv 7, eabe8130.

[74]

Deng, Y. H., Xu, S., Chen, S. S., Xiao, X., Zhao, J. J., Huang, J. S. (2021). Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633–641.

[75]

Bi, Z. N., Xu, X. Q., Chen, X., Zhu, Y. Q., Liu, C., Yu, H., Zheng, Y. P., Troshin, P. A., Guerrero, A., Xu, G. (2022). High-performance large-area blade-coated perovskite solar cells with low ohmic loss for low lighting indoor applications. Chem. Eng. J. 446, 137164.

[76]

Tian, C. C., Gao, X. F., Li, J., Pan, J. Y., Yu, G. M., Huang, B., Wen, Y. T., Zhu, H., Bu, T. L., Cheng, Y. B., et al. (2022). Scalable growth of stable wide-bandgap perovskite towards large-scale tandem photovoltaics. Sol. RRL 6, 2200134.

[77]

Xiao, K., Lin, Y. H., Zhang, M., Oliver, R. D. J., Wang, X., Liu, Z., Luo, X., Li, J., Lai, D., Luo, H. W., et al. (2022). Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767.

[78]

Shi, Y., Sun, J. L., Zhou, J., Wen, T. Y., Zou, C., Liu, D., Liu, F., Yang, S., Deng, Y. H., Yang, Z. B. (2023). High-speed deposition of large-area narrow-bandgap perovskite films for all-perovskite tandem solar mini-modules. Adv. Funct. Mater. 33, 2307209.

[79]

Yuan, L. H., Chen, X. N., Guo, X. M., Huang, S. H., Wu, X. X., Shen, Y. X., Gu, H., Chen, Y. J., Zeng, G. X., Egelhaaf, H. J., et al. (2023). Volatile perovskite precursor ink enables window printing of phase-pure FAPbI3 perovskite solar cells and modules in ambient atmosphere. Angew. Chem. Int. Ed. 63, e202316954.

[80]

Żuraw, W., Vinocour Pacheco, F. A., Sánchez-Diaz, J., Przypis, Ł., Mejia Escobar, M. A., Almosni, S., Vescio, G., Martínez-Pastor, J. P., Garrido, B., Kudrawiec, R., et al. (2023). Large-area, flexible, lead-free sn-perovskite solar modules. ACS Energy Lett 8, 4885–4887.

[81]

Di Giacomo, F., Shanmugam, S., Fledderus, H., Bruijnaers, B. J., Verhees, W. J. H., Dorenkamper, M. S., Veenstra, S. C., Qiu, W. M., Gehlhaar, R., Merckx, T., et al. (2018). Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cells 181, 53–59.

[82]

Du, M. Y., Zhu, X. J., Wang, L. K., Wang, H., Feng, J. S., Jiang, X., Cao, Y. X., Sun, Y. M., Duan, L. J., Jiao, Y. X., et al. (2020). High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency. Adv. Mater. 32, 2004979.

[83]

Xu, M., Ji, W. X., Sheng, Y. S., Wu, Y. W., Cheng, H., Meng, J., Yan, Z. B., Xu, J. F., Mei, A. Y., Hu, Y., et al. (2020). Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy 74, 104842.

[84]

Bu, T. L., Li, J., Li, H. Y., Tian, C. C., Su, J., Tong, G. Q., Ono, L. K., Wang, C., Lin, Z. P., Chai, N. Y., et al. (2021). Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332.

[85]

Li, J. Z., Dagar, J., Shargaieva, O., Flatken, M. A., Köbler, H., Fenske, M., Schultz, C., Stegemann, B., Just, J., Többens, D. M., et al. (2021). 20.8% Slot-die coated MAPbI3 perovskite solar cells by optimal DMSO-content and age of 2-ME based precursor inks. Adv. Energy Mater. 11, 2003460.

[86]

Zhu, X. J., Yang, S. A., Cao, Y. X., Duan, L. J., Du, M. Y., Feng, J. S., Jiao, Y. X., Jiang, X., Sun, Y. M., Wang, H., et al. (2021). Ionic-liquid-perovskite capping layer for stable 24.33%-efficient solar cell. Adv. Energy Mater. 12, 2103491.

[87]

Zimmermann, I., Al Atem, M., Fournier, O., Bernard, S., Jutteau, S., Lombez, L., Rousset, J. (2021). Sequentially slot-die-coated perovskite for efficient and scalable solar cells. Adv. Mater. Interfaces 8, 2100743.

[88]

Rana, P. J. S., Febriansyah, B., Koh, T. M., Muhammad, B. T., Salim, T., Hooper, T. J. N., Kanwat, A., Ghosh, B., Kajal, P., Lew, J. H., et al. (2022). Alkali additives enable efficient large area (>55 cm2) slot-die coated perovskite solar modules. Adv. Funct. Mater. 32, 2113026.

[89]

Rezaee, E., Kutsarov, D., Li, B. W., Bi, J. X., Silva, S. R. P. (2022). A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices. Sci. Rep. 12, 7411.

[90]

Xu, K., Al-Ashouri, A., Peng, Z. W., Köhnen, E., Hempel, H., Akhundova, F., Marquez, J. A., Tockhorn, P., Shargaieva, O., Ruske, F., et al. (2022). Slot-die coated triple-halide perovskites for efficient and scalable perovskite/silicon tandem solar cells. ACS Energy Lett 7, 3600–3611.

[91]

Zimmermann, I., Provost, M., Mejaouri, S., Al Atem, M., Blaizot, A., Duchatelet, A., Collin, S., Rousset, J. (2022). Industrially compatible fabrication process of perovskite-based mini-modules coupling sequential slot-die coating and chemical bath deposition. ACS Appl. Mater. Interfaces 14, 11636–11644.

[92]

Abate, S. Y., Qi, Y. F., Zhang, Q. Q., Jha, S., Zhang, H. X., Ma, G. R., Gu, X. D., Wang, K., Patton, D., Dai, Q. L. (2023). Eco-friendly solvent engineered CsPbI2.77Br0.23 ink for large-area and scalable high performance perovskite solar cells. Adv. Mater. 36, 2310279.

[93]

Jeong, D. N., Lee, D. K., Seo, S., Lim, S. Y., Zhang, Y., Shin, H., Cheong, H., Park, N. G. (2019). Perovskite cluster-containing solution for scalable D-bar coating toward high-throughput perovskite solar cells. ACS Energy Lett. 4, 1189–1195.

[94]

Lee, D. K., Jeong, D. N., Ahn, T. K., Park, N. G. (2019). Precursor engineering for a large-area perovskite solar cell with >19% efficiency. ACS Energy Lett. 4, 2393–2401.

[95]

Lee, D. K., Lim, K. S., Lee, J. W., Park, N. G. (2021). Scalable perovskite coating via anti-solvent-free Lewis acid–base adduct engineering for efficient perovskite solar modules. J. Mater. Chem. A 9, 3018–3028.

[96]

Yoo, J. W., Jang, J., Kim, U., Lee, Y., Ji, S. G., Noh, E., Hong, S., Choi, M., Seok, S. I. (2021). Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule 5, 2420–2436.

[97]

Meng, X. C., Hu, X. T., Zhang, Y. Y., Huang, Z. Q., Xing, Z., Gong, C. X., Rao, L., Wang, H. Y., Wang, F. Y., Hu, T., et al. (2021). A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage. Adv. Funct. Mater. 31, 2106460.

[98]

Xing, Z., Lin, S. Y., Meng, X. C., Hu, T., Li, D. X., Fan, B. J., Cui, Y. J., Li, F. Y., Hu, X. T., Chen, Y. W. (2021). A highly tolerant printing for scalable and flexible perovskite solar cells. Adv. Funct. Mater. 31, 2107726.

[99]

Zhang, S. H., Wang, H. Y., Duan, X., Rao, L., Gong, C. X., Fan, B. J., Xing, Z., Meng, X. C., Xie, B., Hu, X. T. (2021). Printable and homogeneous NiOx hole transport layers prepared by a polymer-network gel method for large-area and flexible perovskite solar cells. Adv. Funct. Mater. 31, 2106495.

[100]

Fan, B. J., Xiong, J., Zhang, Y. Y., Gong, C. X., Li, F., Meng, X. C., Hu, X. T., Yuan, Z. Y., Wang, F. Y., Chen, Y. W. (2022). A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv. Mater. 34, 2201840.

[101]

Gong, C. X., Fan, B. J., Li, F., Xing, Z., Meng, X. C., Hu, T., Hu, X. T., Chen, Y. W. (2022). An enhanced couette flow printing strategy to recover efficiency losses by area and substrate differences in perovskite solar cells. Energy Environ. Sci. 15, 4313–4322.

[102]

Xing, Z., Meng, X. C., Li, D. X., Zhang, Y. Y., Fan, B. J., Huang, Z. Q., Wang, F. Y., Hu, X. T., Hu, T., Chen, Y. W. (2023). Modulation of colloidal assembly behavior enables printable low-dimensional perovskite photovoltaics. Angew. Chem. Int. Ed. 62, e202303177.

[103]

Heo, J. H., Lee, M. H., Jang, M. H., Im, S. H. (2016). Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A 4, 17636–17642.

[104]

Kim, Y. Y., Yang, T. Y., Suhonen, R., Välimäki, M., Maaninen, T., Kemppainen, A., Jeon, N. J., Seo, J. (2019). Gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing. Adv. Sci. 6, 1802094.

[105]

Othman, M., Zheng, F., Seeber, A., Chesman, A. S. R., Scully, A. D., Ghiggino, K. P., Gao, M., Etheridge, J., Angmo, D. (2022). Millimeter-sized clusters of triple cation perovskite enables highly efficient and reproducible roll-to-roll fabricated inverted perovskite solar cells. Adv. Funct. Mater. 32, 2110700.

[106]

Liu, M. Z., Johnston, M. B., Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398.

[107]

Ono, L. K., Wang, S. H., Kato, Y., Raga, S. R., Qi, Y. B. (2014). Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 7, 3989–3993.

[108]

Borchert, J., Milot, R. L., Patel, J. B., Davies, C. L., Wright, A. D., Martínez Maestro, L., Snaith, H. J., Herz, L. M., Johnston, M. B. (2017). Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2, 2799–2804.

[109]

Liang, G. X., Lan, H. B., Fan, P., Lan, C. F., Zheng, Z. H., Peng, H. X., Luo, J. T. (2018). Highly uniform large-area (100 cm2) perovskite CH3NH3PbI3 thin-films prepared by single-source thermal evaporation. Coatings 8, 256.

[110]

Li, J., Wang, H., Chin, X. Y., Dewi, H. A., Vergeer, K., Goh, T. W., Lim, J. W. M., Lew, J. H., Loh, K. P., Soci, C., et al. (2020). Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule 4, 1035–1053.

[111]

Feng, J. S., Jiao, Y. X., Wang, H., Zhu, X. J., Sun, Y. M., Du, M. Y., Cao, Y. X., Yang, D., Liu, S. Z. (2021). High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ. Sci. 14, 3035–3043.

[112]

Wang, Y. L., Lv, P., Pan, J. Y., Chen, J. H., Liu, X. J., Hu, M., Wan, L., Cao, K., Liu, B. S., Ku, Z., et al. (2023). Grain boundary elimination via recrystallization-assisted vapor deposition for efficient and stable perovskite solar cells and modules. Adv. Mater. 35, 2304625.

[113]
Duan, C. Y., Zhong, J. L., Hu, S. H., Dou, Y. C., Lu, J. F., Cheng, Y. B., Ku, Z. (2024). Oriented growth for efficient and scalable perovskite solar cells by vapor–solid reaction. Adv. Funct. Mater. in press. https://doi.org/10.1002/adfm.202313435
[114]

Priyadarshi, A., Haur, L. J., Murray, P., Fu, D. C., Kulkarni, S., Xing, G. C., Sum, T. C., Mathews, N., Mhaisalkar, S. G. (2016). A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. Energy Environ. Sci. 9, 3687–3692.

[115]

Hu, Y., Si, S., Mei, A. Y., Rong, Y. G., Liu, H. W., Li, X., Han, H. W. (2017). Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Sol. RRL 1, 1600019.

[116]

Liu, L., Zuo, C. T., Ding, L. M. (2021). Self-spreading produces highly efficient perovskite solar cells. Nano Energy 90, 106509.

[117]

Chen, H., Ye, F., Tang, W. T., He, J. J., Yin, M. S., Wang, Y. B., Xie, F. X., Bi, E. B., Yang, X. D., Grätzel, M., et al. (2017). A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95.

[118]

Peiris, T. A. N., Weerasinghe, H. C., Sharma, M., Kim, J. E., Michalska, M., Chandrasekaran, N., Senevirathna, D. C., Li, H. C., Chesman, A. S. R., Vak, D., et al. (2022). Non-aqueous one-pot SnO2 nanoparticle inks and their use in printable perovskite solar cells. Chem. Mater. 34, 5535–5545.

[119]

Chen, C. R., Zeng, L. X., Jiang, Z. Y., Xu, Z. H., Chen, Y. J., Wang, Z., Chen, S., Xu, B. M., Mai, Y. H., Guo, F. (2021). Vacuum-assisted preparation of high-quality quasi-2D perovskite thin films for large-area light-emitting diodes. Adv. Funct. Mater. 32, 2107644.

[120]

Shen, Y., Wang, J. K., Li, Y. Q., Shen, K. C., Su, Z. H., Chen, L., Guo, M. L., Cai, X. Y., Xie, F. M., Qian, X. Y., et al. (2021). Interfacial "anchoring effect" enables efficient large-area sky-blue perovskite light-emitting diodes. Adv. Sci. 8, 2102213.

[121]

Sun, C. J., Jiang, Y. Z., Cui, M. H., Qiao, L., Wei, J. L., Huang, Y. M., Zhang, L., He, T. W., Li, S. S., Hsu, H. Y., et al. (2021). High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207.

[122]

Chu, S. L., Zhang, Y. H., Xiao, P., Chen, W. J., Tang, R. F., Shao, Y., Chen, T., Zhang, X. Q., Liu, F. G., Xiao, Z. G. (2022). Large-area and efficient sky-blue perovskite light-emitting diodes via blade-coating. Adv. Mater. 34, 2108939.

[123]

Kim, Y. H., Park, J., Kim, S., Kim, J. S., Xu, H. X., Jeong, S. H., Hu, B., Lee, T. W. (2022). Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17, 590–597.

[124]

Zhang, D. Q., Zhang, Q. P., Ren, B. T., Zhu, Y. D., Abdellah, M., Fu, Y., Cao, B., Wang, C., Gu, L. L., Ding, Y. C., et al. (2022). Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photonics 16, 284–290.

[125]

Kong, L. M., Sun, C. J., You, M. Q., Jiang, Y. Z., Wang, G. Z., Wang, L., Zhang, C. X., Chen, S., Wang, S., Yang, S. A., et al. (2023). Universal molecular control strategy for scalable fabrication of perovskite light-emitting diodes. Nano Lett. 23, 985–992.

[126]

Liu, H., Shi, G. Y., Khan, R., Chu, S. L., Huang, Z. M., Shi, T. F., Sun, H. D., Li, Y. P., Zhou, H. M., Xiao, P., et al. (2023). Large-area flexible perovskite light-emitting diodes enabled by inkjet printing. Adv. Mater. 36, 2309921.

[127]

Wang, H., Xu, W. D., Wei, Q., Peng, S., Shang, Y. Q., Jiang, X. Y., Yu, D. N., Wang, K., Pu, R. H., Zhao, C. X., et al. (2023). In-situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes. Ligh: Sci. Appl. 12, 62.

[128]

Yang, F., Zeng, Q. S., Dong, W., Kang, C. Y., Qu, Z. X., Zhao, Y., Wei, H. T., Zheng, W. T., Zhang, X., Yang, B. (2023). Rational adjustment to interfacial interaction with carbonized polymer dots enabling efficient large-area perovskite light-emitting diodes. Light Sci. Appl. 12, 119.

[129]

Meroni, S. M. P., Hooper, K. E. A., Dunlop, T., Baker, J. A., Worsley, D., Charbonneau, C., Watson, T. M. (2020). Scribing method for carbon perovskite solar modules. Energies 13, 1589.

[130]

Xi, J., Duim, H., Pitaro, M., Gahlot, K., Dong, J. J., Portale, G., Loi, M. A. (2021). Scalable, template driven formation of highly crystalline lead-tin halide perovskite films. Adv. Funct. Mater. 31, 2105734.

Energy Materials and Devices
Article number: 9370030
Cite this article:
Jin R-J, Lou Y-H, Wang Z-K. Deposition technologies of perovskite layer enabling large-area photovoltaic modules. Energy Materials and Devices, 2024, 2(1): 9370030. https://doi.org/10.26599/EMD.2024.9370030

3458

Views

331

Downloads

0

Crossref

Altmetrics

Received: 15 February 2024
Revised: 04 March 2024
Accepted: 06 March 2024
Published: 29 March 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return