AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Theoretical insights into the role of defects in the optimization of the electrochemical capacitance of graphene

Alex Aziz1( )Wei Yu2Rui Tang3Rachel Crespo-Otero4Devis Di Tommaso5Hirotomo Nishihara2,6( )
Manchester Metropolitan University, Department of Natural Sciences, Manchester M1 5GD, United Kindom
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
Department of Chemistry, University College London, London WC1H 0AJ, United Kindom
Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kindom
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
Show Author Information

Graphical Abstract

Abstract

Graphene-based frameworks suffer from a low quantum capacitance due to graphene’s Dirac point at the Fermi level. This theoretical study investigated the effect structural defects, nitrogen and boron doping, and surface epoxy/hydroxy groups have on the electronic structure and capacitance of graphene. Density functional theory calculations reveal that the lowest energy configurations for nitrogen or boron substitutional doping occur when the dopant atoms are segregated. This elucidates why the magnetic transition for nitrogen doping is experimentally only observed at higher doping levels. We also highlight that the lowest energy configuration for a single vacancy defect is magnetic. Joint density functional theory calculations show that the fixed band approximation becomes increasingly inaccurate for electrolytes with lower dielectric constants. The introduction of structural defects rather than nitrogen or boron substitutional doping, or the introduction of adatoms leads to the largest increase in density of states and capacitance around graphene’s Dirac point. However, the presence of adatoms or substitutional doping leads to a larger shift of the potential of zero charge away from graphene’s Dirac point.

Electronic Supplementary Material

Download File(s)
EMD20240035_ESM.pdf (2.3 MB)

References

[1]

Blanco, H., Faaij, A. (2018). A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 81, 1049–1086.

[2]

Zhang, L. L., Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531.

[3]

Simon, P., Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nat. Mater. 7, 845–854.

[4]

Sun, J. L., Luo, B. C., Li, H. X. (2022). A review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: past, present, and future. Adv. Energy Sustain. Res. 3, 2100191.

[5]

Pershaanaa, M., Bashir, S., Ramesh, S., Ramesh, K. (2022). Every bite of Supercap: a brief review on construction and enhancement of supercapacitor. J. Energy Storage 50, 104599.

[6]

Ke, Q. Q., Wang, J. (2016). Graphene-based materials for supercapacitor electrodes – A review. J. Materiomics 2, 37–54.

[7]

Tan, C. L., Huang, X., Zhang, H. (2013). Synthesis and applications of graphene-based noble metal nanostructures. Mater. Today 16, 29–36.

[8]

Ji, H. X., Zhao, X., Qiao, Z. H., Jung, J., Zhu, Y. W., Lu, Y. L., Zhang, L. L., MacDonald, A. H., Ruoff, R. S. (2014). Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317.

[9]

Chen, J. F., Han, Y. L., Kong, X. H., Deng, X. Z., Park, H. J., Guo, Y. L., Jin, S., Qi, Z. K., Lee, Z., Qiao, Z. H., et al. (2016). The origin of improved electrical double-layer capacitance by inclusion of topological defects and dopants in graphene for supercapacitors. Angew. Chem. Int. Ed. 55, 13822–13827.

[10]

Lv, S., Ma, L. Y., Shen, X. Y., Tong, H. (2021). Recent design and control of carbon materials for supercapacitors. J. Mater. Sci. 56, 1919–1942.

[11]

Saha, D., Li, Y. C., Bi, Z. H., Chen, J. H., Keum, J. K., Hensley, D. K., Grappe, H. A., Meyer III, H. M., Dai, S., Paranthaman, M. P., et al. (2014). Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30, 900–910.

[12]

Zhai, Y. P., Dou, Y. Q., Zhao, D. Y., Fulvio, P. F., Mayes, R. T., Dai, S. (2011). Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850.

[13]

Nishihara, H., Simura, T., Kobayashi, S., Nomura, K., Berenguer, R., Ito, M., Uchimura, M., Iden, H., Arihara, K., Ohma, A., et al. (2016). Oxidation-resistant and elastic mesoporous carbon with single-layer graphene walls. Adv. Funct. Mater. 26, 6418–6427.

[14]

Radin, M. D., Ogitsu, T., Biener, J., Otani, M., Wood, B. C. (2015). Capacitive charge storage at an electrified interface investigated via direct first-principles simulations. Phys. Rev. B 91, 125415.

[15]

Zhan, C., Jiang, D. E. (2016). Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes. J. Phys. Chem. Lett. 7, 789–794.

[16]

Xia, J. L., Chen, F., Li, J. H., Tao, N. J. (2009). Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509.

[17]

Wu, J. Z. (2022). Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859.

[18]

Tang, R., Aziz, A., Yu, W., Pan, Z. Z., Nishikawa, G., Yoshii, T., Nomura, K., Taylor, E. E., Stadie, N. P., Inoue, K., et al. (2024). Prominent structural dependence of quantum capacitance unraveled by nitrogen-doped graphene mesosponge. Small 20, 2308066.

[19]

Shylau, A. A., Kłos, J. W., Zozoulenko, I. V. (2009). Capacitance of graphene nanoribbons. Phys. Rev. B 80, 205402.

[20]

Abidi, N., Lim, K. R. G., Seh, Z. W., Steinmann, S. N. (2021). Atomistic modeling of electrocatalysis: are we there yet?. WIREs Comput. Mol. Sci. 11, e1499.

[21]

Sundararaman, R., Vigil-Fowler, D., Schwarz, K. (2022). Improving the accuracy of atomistic simulations of the electrochemical interface. Chem. Rev. 122, 10651–10674.

[22]

Sundararaman, R., Goddard III, W. A., Arias, T. A. (2017). Grand canonical electronic density-functional theory: algorithms and applications to electrochemistry. J. Chem. Phys. 146, 114104.

[23]

Wood, B. C., Ogitsu, T., Otani, M., Biener, J. (2014). First-principles-inspired design strategies for graphene-based supercapacitor electrodes. J. Phys. Chem. C 118, 4–15.

[24]

Bandaru, P. R., Yamada, H., Narayanan, R., Hoefer, M. (2017). The role of defects and dimensionality in influencing the charge, capacitance, and energy storage of graphene and 2D materials. Nanotechnol. Rev. 6, 421–433.

[25]

Ochoa-Calle, A., Guevara-Garcia, A., Vazquez-Arenas, J., González, I., Galván, M. (2020). Establishing the relationship between quantum capacitance and softness of N-doped graphene/electrolyte interfaces within the density functional theory grand canonical kohn-sham formalism. J. Phys. Chem. A 124, 573–581.

[26]

Cui, D. D., Li, H. J., Li, M. J., Li, C. P., Qian, L. R., Zhou, B. Z., Yang, B. H. (2019). Boron-doped graphene directly grown on boron-doped diamond for high-voltage aqueous supercapacitors. ACS Appl. Energy Mater. 2, 1526–1536.

[27]

Zhan, C., Zhang, P. F., Dai, S., Jiang, D. E. (2016). Boron supercapacitors. ACS Energy Lett. 1, 1241–1246.

[28]

Xu, Q., Yang, G. M., Fan, X. F., Zheng, W. T. (2019). Improving the quantum capacitance of graphene-based supercapacitors by the doping and co-doping: first-principles calculations. ACS Omega 4, 13209–13217.

[29]

Tang, R., Nomura, K., Inoue, K., Kotani, M., Kyotani, T., Nishihara, H. (2022). Capacitance of edge-free three-dimensional graphene: new perspectives on the design of carbon structures for supercapacitor applications. Electrochim. Acta 429, 141009.

[30]

Sunahiro, S., Nomura, K., Goto, S., Kanamaru, K., Tang, R., Yamamoto, M., Yoshii, T., Kondo, J. N., Zhao, Q., Nabi, A. G., et al. (2021). Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide. J. Mater. Chem. A 9, 14296–14308.

[31]

Banhart, F., Kotakoski, J., Krasheninnikov, A. V. (2011). Structural defects in graphene. ACS Nano 5, 26–41.

[32]

Trasatti, S. (1971). Work function, electronegativity, and electrochemical behaviour of metals: II. Potentials of zero charge and “electrochemical” work functions. J. Electroanal. Chem. Int. Electrochem. 33, 351–378.

[33]

Ringe, S., Hörmann, N. G., Oberhofer, H., Reuter, K. (2022). Implicit solvation methods for catalysis at electrified interfaces. Chem. Rev. 122, 10777–10820.

[34]

Kresse, G., Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50.

[35]

Kresse, G., Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186.

[36]

Grau-Crespo, R., Hamad, S., Catlow, C. R. A., de Leeuw, N. H. (2007). Symmetry-adapted configurational modelling of fractional site occupancy in solids. J. Phys.: Condens. Matter 19, 256201.

[37]

Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.

[38]

Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104.

[39]

Grimme, S., Ehrlich, S., Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465.

[40]

Trucano, P., Chen, R. (1975). Structure of graphite by neutron diffraction. Nature 258, 136–137.

[41]

Sundararaman, R., Arias, T. A. (2013). Regularization of the Coulomb singularity in exact exchange by Wigner-Seitz truncated interactions: towards chemical accuracy in nontrivial systems. Phys. Rev. B 87, 165122.

[42]

Perdew, J. P., Burke, K., Ernzerhof, M. (1997). Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396.

[43]

Garrity, K. F., Bennett, J. W., Rabe, K. M., Vanderbilt, D. (2014). Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452.

[44]

Letchworth-Weaver, K., Arias, T. A. (2012). Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86, 075140.

[45]

Gunceler, D., Letchworth-Weaver, K., Sundararaman, R., Schwarz, K. A., Arias, T. A. (2013). The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Modell. Simul. Mater. Sci. Eng. 21, 074005.

[46]

Paek, E., Pak, A. J., Hwang, G. S. (2013). A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid. J. Electrochem. Soc. 160, A1–A10.

[47]

Lu, J., Bao, Y., Su, C. L., Loh, K. P. (2013). Properties of strained structures and topological defects in graphene. ACS Nano 7, 8350–8357.

[48]

Bhatt, M. D., Kim, H., Kim, G. (2022). Various defects in graphene: a review. RSC Adv. 12, 21520–21547.

[49]

Zhang, M. J., Deng, K., Wei, F., Wu, X. L., Du, L., Liu, W. (2022). Adsorption and desorption of tritium on/from nuclear graphite. ACS Omega 7, 752–760.

[50]

Rowe, P., Deringer, V. L., Gasparotto, P., Csányi, G., Michaelides, A. (2020). An accurate and transferable machine learning potential for carbon. J. Chem. Phys. 153, 034702.

[51]

Ugeda, M. M., Brihuega, I., Guinea, F., Gómez-Rodríguez, J. M. (2010). Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804.

[52]

Sepioni, M., Nair, R. R., Rablen, S., Narayanan, J., Tuna, F., Winpenny, R., Geim, A. K., Grigorieva, I. V. (2010). Limits on intrinsic magnetism in graphene. Phys. Rev. Lett. 105, 207205.

[53]

Wakabayashi, K., Yoshii, T., Nishihara, H. (2023). Quantitative study on catalysis of unpaired electrons in carbon edge sites. Carbon 210, 118069.

[54]

Denis, P. A., Iribarne, F. (2013). Comparative study of defect reactivity in graphene. J. Phys. Chem. C 117, 19048–19055.

[55]

Momma, K., Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276.

[56]

Nishihara, H., Fujimoto, H., Itoi, H., Nomura, K., Tanaka, H., Miyahara, M. T., Bonnaud, P. A., Miura, R., Suzuki, A., Miyamoto, N., et al. (2018). Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels. Carbon 129, 854–862.

[57]

Zhu, J. W., Mu, S. C. (2020). Defect engineering in carbon-based electrocatalysts: insight into intrinsic carbon defects. Adv. Funct. Mater. 30, 2001097.

[58]

Yu, Q. K., Jauregui, L. A., Wu, W., Colby, R., Tian, J. F., Su, Z. H., Cao, H. L., Liu, Z. H., Pandey, D., Wei, D. G., et al. (2011). Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449.

[59]

Yu, W., Yoshii, T., Aziz, A., Tang, R., Pan, Z. Z., Inoue, K., Kotani, M., Tanaka, H., Scholtzová, E., Tunega, D., et al. (2023). Edge-site-free and topological-defect-rich carbon cathode for high-performance lithium-oxygen batteries. Adv. Sci. 10, 2300268.

[60]

Xia, T., Yoshii, T., Nomura, K., Wakabayashi, K., Pan, Z. Z., Ishii, T., Tanaka, H., Mashio, T., Miyawaki, J., Otomo, T., et al. (2023). Chemistry of zipping reactions in mesoporous carbon consisting of minimally stacked graphene layers. Chem. Sci. 14, 8448–8457.

[61]

Jänes, A., Eskusson, J., Thomberg, T., Lust, E. (2014). Electrochemical double layer capacitors based on propylene carbonate solution operating from −45°C to 100°C. J. Electrochem. Soc. 161, A712–A717.

[62]

Pohlmann, S., Balducci, A. (2013). A new conducting salt for high voltage propylene carbonate-based electrochemical double layer capacitors. Electrochim. Acta 110, 221–227.

[63]

Itoi, H., Nishihara, H., Kyotani, T. (2016). Effect of heteroatoms in ordered microporous carbons on their electrochemical capacitance. Langmuir 32, 11997–12004.

[64]

Jiang, H. R., Tan, P., Liu, M., Zeng, Y. K., Zhao, T. S. (2016). Unraveling the positive roles of point defects on carbon surfaces in nonaqueous lithium–oxygen batteries. J. Phys. Chem. C 120, 18394–18402.

[65]

Zhan, C., Neal, J., Wu, J. Z., Jiang, D. E. (2015). Quantum effects on the capacitance of graphene-based electrodes. J. Phys. Chem. C 119, 22297–22303.

[66]

Puschnig, P., Lüftner, D. (2015). Simulation of angle-resolved photoemission spectra by approximating the final state by a plane wave: from graphene to polycyclic aromatic hydrocarbon molecules. J. Electron. Spectrosc. Relat. Phenom. 200, 193–208.

[67]

Trasatti, S. (1986). The absolute electrode potential: an explanatory note (Recommendations 1986). Pure Appl. Chem. 58, 955–966.

[68]

Li, L., Reich, S., Robertson, J. (2005). Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 184109.

[69]

Kotakoski, J., Krasheninnikov, A. V., Kaiser, U., Meyer, J. C. (2011). From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505.

[70]

Błoński, P., Tuček, J., Sofer, Z., Mazánek, V., Petr, M., Pumera, M., Otyepka, M., Zbořil, R. (2017). Doping with graphitic nitrogen triggers ferromagnetism in graphene. J. Am. Chem. Soc. 139, 3171–3180.

[71]

Dideikin, A. T., Vul’, A. Y. (2019). Graphene oxide and derivatives: the place in graphene family. Front. Phys. 6, 149.

[72]

Bakandritsos, A., Jakubec, P., Pykal, M., Otyepka, M. (2019). Covalently functionalized graphene as a supercapacitor electrode material. Flatchem 13, 25–33.

[73]

Nomura, K., Nishihara, H., Kobayashi, N., Asada, T., Kyotani, T. (2019). 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ. Sci. 12, 1542–1549.

[74]

Hahn, M., Baertschi, M., Barbieri, O., Sauter, J. C., Kötz, R., Gallay, R. (2004). Interfacial capacitance and electronic conductance of activated carbon double-layer electrodes. Electrochem. Solid-State Lett. 7, A33–A36.

[75]

Howell, J. O., Goncalves, J. M., Amatore, C., Klasinc, L., Wightman, R. M., Kochi, J. K. (1984). Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials. J. Am. Chem. Soc. 106, 3968–3976.

[76]

De Waele, S., Lejaeghere, K., Sluydts, M., Cottenier, S. (2016). Error estimates for density-functional theory predictions of surface energy and work function. Phys. Rev. B 94, 235418.

[77]

Bramley, G., Nguyen, M. T., Glezakou, V. A., Rousseau, R., Skylaris, C. K. (2020). Reconciling work functions and adsorption enthalpies for implicit solvent models: a Pt (111)/water interface case study. J. Chem. Theory Comput. 16, 2703–2715.

[78]

Toh, C. T., Zhang, H. J., Lin, J. H., Mayorov, A. S., Wang, Y. P., Orofeo, C. M., Ferry, D. B., Andersen, H., Kakenov, N., Guo, Z. L., et al. (2020). Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203.

[79]

Simeral, L., Amey, R. L. (1970). Dielectric properties of liquid propylene carbonate. J. Phys. Chem. 74, 1443–1446.

[80]

Kislenko, V. A., Pavlov, S. V., Fedorov, M. V., Kislenko, S. A. (2021). New aspects of enhancing the graphene capacitance by defects in aqueous electrolytes and ionic liquids. JETP Lett. 114, 263–268.

[81]

Ando, Y., Gohda, Y., Tsuneyuki, S. (2013). Ab initio molecular dynamics study of the Helmholtz layer formed on solid-liquid interfaces and its capacitance. Chem. Phys. Lett. 556, 9–12.

[82]

Sruthi, T., Tarafder, K. (2019). Enhancement of quantum capacitance by chemical modification of graphene supercapacitor electrodes: a study by first principles. Bull. Mater. Sci. 42, 257.

[83]

Hassan, A., Mattioli, I. A., Colombo, R. N. P., Crespilho, F. N. (2023). Tuning quantum capacitance in 2D graphene electrodes: the role of defects and charge carrier concentration. J. Mater. Chem. C 11, 6301–6305.

[84]

Tang, R., Taguchi, K., Nishihara, H., Ishii, T., Morallón, E., Cazorla-Amorós, D., Asada, T., Kobayashi, N., Muramatsu, Y., Kyotani, T. (2019). Insight into the origin of carbon corrosion in positive electrodes of supercapacitors. J. Mater. Chem. A 7, 7480–7488.

Energy Materials and Devices
Article number: 9370035
Cite this article:
Aziz A, Yu W, Tang R, et al. Theoretical insights into the role of defects in the optimization of the electrochemical capacitance of graphene. Energy Materials and Devices, 2024, 2(3): 9370035. https://doi.org/10.26599/EMD.2024.9370035

2308

Views

640

Downloads

0

Crossref

Altmetrics

Received: 26 January 2024
Revised: 02 May 2024
Accepted: 07 May 2024
Published: 14 August 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return