AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Bithiophene-based cost-effective hole transport materials for efficient n–i–p perovskite solar cells

Lang Li1,Lingfang Zheng1,Wei Gao1( )Jinyan Zeng1Siwei Hao1Xinjing Zhao1Yangyang Dang2Liqiang Xie1( )Zhanhua Wei1( )
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China

Lang Li and Lingfang Zheng contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Charge transport materials constitute a relatively large portion of the cost in the production of perovskite solar cells (PSCs). Therefore, developing cheap and efficient charge transport materials is of great significance for the commercialization of PSCs. In this study, three low-cost hole transport materials (HTMs), specifically 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (TP-H), 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(3-methoxy-N,N-bis(4-methoxyphenyl)aniline) (TP-OMe), and 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(3-fluoro-N,N-bis(4-methoxyphenyl)aniline) (TP-F), were designed and synthesized using a bulky group-substituted 2,2'-bithiophene core and methoxy- or F-functionalized triphenylamine derivatives. Compared to the HTMs without F atoms, TP-F using F substitution exhibited enhanced intermolecular packing, a lower highest occupied molecular orbital energy level, and increased hole mobility and conductivity. The PSC incorporating the doped TP-F as the hole transport layer achieved the highest power conversion efficiency (over 24%) among the three devices. The high performance of TP-F can be attributed to the passivation effect of S and F atoms on uncoordinated Pb2+ within the perovskite (PVSK) film, which significantly reduces the density of defect states and the incidence of trap-mediated recombination in PSCs. This study demonstrates the effectiveness of the 3,3'-bis(4-methoxy-2,6-dimethylphenyl)-2,2'-bithiophene building block for constructing cost-effective HTMs and highlights the impact of F substitution on enhancing the photovoltaic performance of PSCs.

Electronic Supplementary Material

Download File(s)
EMD20240036_ESM.pdf (1.5 MB)

References

[1]

Liang, Z., Zhang, Y., Xu, H. F., Chen, W. J., Liu, B. Y., Zhang, J. Y., Zhang, H., Wang, Z. H., Kang, D. H., Zeng, J. R., et al. (2023). Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563.

[2]

Zheng, Y. T., Li, Y. R., Zhuang, R. S., Wu, X. Y., Tian, C. C., Sun, A. X., Chen, C., Guo, Y. S., Hua, Y., Meng, K. et al. (2024). Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy Environ. Sci. 17, 1153–1162.

[3]

Huang, Z. J., Bai, Y., Huang, X. D., Li, J. T., Wu, Y. T., Chen, Y. H., Li, K. L., Niu, X. X., Li, N. X., Liu, G. L., et al. (2023). Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537.

[4]

Park, J., Kim, J., Yun, H. S., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730.

[5]

Farokhi, A., Shahroosvand, H., Monache, G. D., Pilkington, M., Nazeeruddin, M. K. (2022). The evolution of triphenylamine hole transport materials for efficient perovskite solar cells. Chem. Soc. Rev. 51, 5974–6064.

[6]

Yan, P. Y., Yang, D. B., Wang, H. Q., Yang, S. C., Ge, Z. Y. (2022). Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy Environ. Sci. 15, 3630–3669.

[7]

Niu, T. Q., Zhu, W. Y., Zhang, Y. H., Xue, Q. F., Jiao, X. C., Wang, Z. J., Xie, Y. M., Li, P., Chen, R. F., Huang, F., et al. (2021). D-A-π-A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells. Joule 5, 249–269.

[8]

Khan, D., Liu, X. Y., Qu, G. P., Nath, A. R., Xie, P. F., Xu, Z. X. (2023). Nexuses between the chemical design and performance of small molecule dopant-free hole transporting materials in perovskite solar cells. Small 19, 2205926.

[9]

Zhang, C. P., Wei, K., Hu, J. F., Cai, X. Y., Du, G. Z., Deng, J. D., Luo, Z. D., Zhang, X. L., Wang, Y., Yang, L., et al. (2023). A review on organic hole transport materials for perovskite solar cells: structure, composition and reliability. Mater. Today 67, 518–547.

[10]

Rombach, F. M., Haque, S. A., Macdonald, T. J. (2021). Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190.

[11]

Cai, Y. H., Zhang, Y. Y., Zhang, J., Pan, X., Andersson, M. R., Wang, P. (2024). A homopolymer of xanthenoxanthene-based polycyclic heteroaromatic for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 63, e202315814.

[12]

Wang, T., Zhang, Y., Kong, W. Y., Qiao, L., Peng, B. G., Shen, Z. C., Han, Q. F., Chen, H., Yuan, Z. L., Zheng, R. K., et al. (2022). Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377, 1227–1232.

[13]

Shen, Z. C., Han, Q. F., Luo, X. H., Shen, Y. Z., Wang, Y. B., Yuan, Y. B., Zhang, Y. Q., Yang, Y., Han, L. Y. (2024). Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photonics 18, 450–457.

[14]

Wu, F., Ji, Y., Zhong, C., Liu, Y., Tan, L. X., Zhu, L. N. (2017). Fluorine-substituted benzothiadiazole-based hole transport materials for highly efficient planar perovskite solar cells with a FF exceeding 80%. Chem. Commun. 53, 8719–8722.

[15]

Lu, H. Q., He, B. Z., Ji, Y., Shan, Y. H., Zhong, C., Xu, J., Liuyang, J. X., Wu, F., Zhu, L. N. (2020). Dopant-free hole transport materials processed with green solvent for efficient perovskite solar cells. Chem. Eng. J. 385, 123976.

[16]

Lee, J. H., Ghanem, T., Sánchez, D. J. P., Josse, P., Blanchard, P., Ahn, H., Lungerich, D., Park, N. G., Cabanetos, C., Park, J. H. (2023). Enhancing intermolecular interaction of spiro-OMeTAD for stable perovskite solar cells with efficiencies over 24%. ACS Energy Lett. 8, 3895–3901.

[17]

Tour, J. M., Wu, R. L., Schumm, J. S. (1990). Approaches to orthogonally fused conducting polymers for molecular electronics. J. Am. Chem. Soc. 112, 5662–5663.

[18]

Sun, Y. H., Wang, C. L., Zhao, D. W., Yu, J. S., Yin, X. X., Grice, C. R., Awni, R. A., Shrestha, N., Yu, Y., Guan, L., et al. (2018). A new hole transport material for efficient perovskite solar cells with reduced device cost. Sol. RRL 2, 1700175.

[19]

Hawash, Z., Ono, L. K., Qi, Y. B. (2018). Recent advances in spiro-MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells. Adv. Mater. Interfaces 5, 1700623.

[20]

Tang, R., Liu, H. T., Xu, Y. N., Chen, K. X., Zhang, J., Zhang, P., Zhong, C., Wu, F., Zhu, L. N. (2023). Molecular configuration engineering in hole-transporting materials toward efficient and stable perovskite solar cells. Adv. Funct. Mater. 33, 2208859.

[21]

Wang, Y. D., Wang, Y., Shao, J. Y., Lan, Y. J., Lan, Z. R., Zhong, Y. W., Song, Y. L. (2021). Defect passivation by a D-A-D type hole-transporting interfacial layer for efficient and stable perovskite solar cells. ACS Energy Lett. 6, 2030–2037.

[22]

Wu, B. X., Fu, Q., Sun, L. X., Liu, Y. Q., Sun, Z., Xue, S., Liu, Y. S., Liang, M. (2022). Conjugation engineering of spiro-based hole transport materials for efficient and stable perovskite solar cells. ACS Energy Lett. 7, 2667–2676.

[23]

Yao, Z. Y., Zhang, F. G., He, L. L., Bi, X. Q., Guo, Y. X., Guo, Y., Wang, L. Q., Wan, X. J., Chen, Y. S., Sun, L. C. (2022). Pyrene-based dopant-free hole-transport polymers with fluorine-induced favorable molecular stacking enable efficient perovskite solar cells. Angew. Chem. Int. Ed. 61, e202201847.

[24]

Zhang, H., Yu, X., Li, M. J., Zhang, Z. L., Song, Z. L., Zong, X. P., Duan, G. T., Zhang, W. F., Chen, C., Zhang, W. H., Liu, Y. S., et al. (2023). Benzothieno[3, 2-b]thiophene-based noncovalent conformational lock achieves perovskite solar cells with efficiency over 24 %. Angew. Chem. Int. Ed. 62, e202314270.

[25]

Cheng, Q. R., Chen, H. Y., Chen, W. J., Ding, J. Y., Chen, Z. Y., Shen, Y. X., Wu, X. X., Wu, Y. Y., Li, Y. W., Li, Y. F. (2023). Green solvent processable, asymmetric dopant-free hole transport layer material for efficient and stable n-i-p perovskite solar cells and modules. Angew. Chem. Int. Ed. 62, e202312231.

[26]

Cheng, Q. R., Chen, H. Y., Yang, F., Chen, Z. Y., Chen, W. J., Yang, H. Y., Shen, Y. X., Ou, X. M., Wu, Y. Y., Li, Y. W., et al. (2022). Molecular self-assembly regulated dopant-free hole transport materials for efficient and stable n-i-p perovskite solar cells and scalable modules. Angew. Chem. Int. Ed. 61, e202210613.

[27]

Zhang, Z., Shen, L. N., Wang, S. J., Zheng, L. F., Li, D., Li, Z. J., Xing, Y. F., Guo, K. P., Xie, L. Q., Wei, Z. H. (2023). Halogenated hole-transport molecules with enhanced isotropic coordination capability enable improved interface and light stability of perovskite solar cells. Adv. Energy Mater. 13, 2204362.

[28]

Zhao, X. M., Yao, C., Gu, K. C., Liu, T. R., Xia, Y., Loo, Y. L. (2020). A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy Environ. Sci. 13, 4334–4343.

[29]

Ma, L. J., Zhang, S. Q., Ren, J. Z., Wang, G. L., Li, J. Y., Chen, Z. H., Yao, H. F., Hou, J. H. (2023). Design of a fully non-fused bulk heterojunction toward efficient and low-cost organic photovoltaics. Angew. Chem. Int. Ed. 62, e202214088.

[30]

Zhou, J., Yin, X. X., Dong, Z. H., Ali, A., Song, Z. N., Shrestha, N., Bista, S. S., Bao, Q. Y., Ellingson, R. J., Yan, Y. F., et al. (2019). Dithieno[3, 2-b: 2′, 3′-d]pyrrole cored p-type semiconductors enabling 20 % efficiency dopant-free perovskite solar cells. Angew. Chem. Int. Ed. 58, 13717–13721.

[31]

Guo, J. J., Sun, J. G., Hu, L., Fang, S. W., Ling, X. F., Zhang, X. L., Wang, Y., Huang, H. H., Han, C. X., Cazorla, C., et al. (2022). Indigo: a natural molecular passivator for efficient perovskite solar cells. Adv. Energy Mater. 12, 2200537.

Energy Materials and Devices
Article number: 9370036
Cite this article:
Li L, Zheng L, Gao W, et al. Bithiophene-based cost-effective hole transport materials for efficient n–i–p perovskite solar cells. Energy Materials and Devices, 2024, 2(2): 9370036. https://doi.org/10.26599/EMD.2024.9370036

1548

Views

260

Downloads

0

Crossref

Altmetrics

Received: 18 March 2024
Revised: 10 May 2024
Accepted: 14 May 2024
Published: 31 May 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return