AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Photoinduced phase segregation in wide-bandgap mixed-halide perovskite solar cells

Yue Yu1Xinxing Liu1Sam Zhang2,3( )Jiangzhao Chen1( )
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
School of Aeronautics, Harbin Institute of Technology, Harbin 150001, China
HIT Zhengzhou Research Institute, Zhengzhou 450000, China
Show Author Information

Graphical Abstract

Abstract

Wide-bandgap (WB) mixed-halide perovskite solar cells (PSCs) play a crucial role in perovskite-based tandem solar cells (TSCs), enabling them to exceed the Shockley–Queisser limits of single-junction solar cells. Nonetheless, the lack of stability in WB perovskite films due to photoinduced phase segregation undermines the stability of WB PSCs and their TSCs, thus impeding the commercialization of perovskite-based TSCs. Many efforts have been made to suppress photoinduced phase segregation in WB perovskite films and significant progresses have been obtained. In this review, we elaborate the mechanisms behind photoinduced phase segregation and its impact on the photovoltaic performance and stability of devices. The importance role of advanced characterization techniques in confirming the photoinduced phase segregation are comprehensively summarized. Beyond that, the effective strategies to alleviate photoinduced phase segregation in WB mixed halide PSCs are systematically assessed. Finally, the prospects for developing highly efficient and stable WB PSCs in tandem application are also presented.

References

[1]
Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html Accessed 1 March, 2024.
[2]

Shi, Y. T., Berry, J. J., Zhang, F. (2024). Perovskite/silicon tandem solar cells: insights and outlooks. ACS Energy Lett. 9, 1305–1330.

[3]

Brinkmann, K. O., Wang, P., Lang, F., Li, W., Guo, X., Zimmermann, F., Olthof, S., Neher, D., Hou, Y., Stolterfoht, M., et al. (2024). Perovskite–organic tandem solar cells. Nat. Rev. Mater. 9, 202–217.

[4]

Roose, B., Dey, K., Fitzsimmons, M. R., Chiang, Y. H., Cameron, P. J., Stranks, S. D. (2024). Electrochemical impedance spectroscopy of all-perovskite tandem solar cells. ACS Energy Lett. 9, 442–453.

[5]
Zeng, L., Tang, L. T., Luo, Z. K., Gong, J. B., Li, J. M., Xiao, X. D. (2024). A review of perovskite/copper indium gallium selenide tandem solar cells. Sol. RRL in press.
[6]

Li, F. M., Wu, D., Shang, L., Xia, R., Zhang, H. R., Huang, Z. X., Gong, J., Mao, L., Zhang, H., Sun, Y. Q., et al. (2024). Highly efficient monolithic perovskite/perovskite/silicon triple-junction solar cells. Adv. Mater. 36, 2311595.

[7]

Lin, R. X., Xu, J., Wei, M. Y., Wang, Y. R., Qin, Z. Y., Liu, Z., Wu, J. L., Xiao, K., Chen, B., Park, S. M., et al. (2022). All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78.

[8]

McMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Hörantner, M. T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., et al. (2016). A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155.

[9]

Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769.

[10]

Xu, F., Zhang, M., Li, Z. K., Yang, X. Y., Zhu, R. (2023). Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Adv. Energy Mater. 13, 2203911.

[11]

Tong, J. H., Jiang, Q., Zhang, F., Kang, S. B., Kim, D. H., Zhu, K. (2021). Wide-bandgap metal halide perovskites for tandem solar cells. ACS Energy Lett. 6, 232–248.

[12]

Eperon, G. E., Hörantner, M. T., Snaith, H. J. (2017). Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095.

[13]

Nie, T., Fang, Z. M., Ren, X. D., Duan, Y. W., Liu, S. Z. (2023). Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15, 70.

[14]

Brennan, M. C., Ruth, A., Kamat, P. V., Kuno, M. (2020). Photoinduced anion segregation in mixed halide perovskites. Trends Chem. 2, 282–301.

[15]

Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., McGehee, M. D. (2015). Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617.

[16]

Samu, G. F., Janáky, C., Kamat, P. V. (2017). A victim of halide ion segregation. How light soaking affects solar cell performance of mixed halide lead perovskites. ACS Energy Lett. 2, 1860–1861.

[17]

Tan, H. R., Che, F. L., Wei, M. Y., Zhao, Y. C., Saidaminov, M. I., Todorović, P., Broberg, D., Walters, G., Tan, F. R., Zhuang, T. T., et al. (2018). Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100.

[18]

Yoon, S. J., Draguta, S., Manser, J. S., Sharia, O., Schneider, W. F., Kuno, M., Kamat, P. V. (2016). Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1, 290–296.

[19]

Li, Z. X., Li, X., Chen, X. G., Cui, X. X., Guo, C. L., Feng, X. Z., Ren, D. X., Mo, Y. Q., Yang, M., Huang, H. W., et al. (2023). In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics. Joule 7, 1363–1381.

[20]

Chen, Z. H., Brocks, G., Tao, S. X., Bobbert, P. A. (2021). Unified theory for light-induced halide segregation in mixed halide perovskites. Nat. Commun. 12, 2687.

[21]

Draguta, S., Sharia, O., Yoon, S. J., Brennan, M. C., Morozov, Y. V., Manser, J. S., Kamat, P. V., Schneider, W. F., Kuno, M. (2017). Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200.

[22]

Brivio, F., Caetano, C., Walsh, A. (2016). Thermodynamic origin of photoinstability in the CH3NH3Pb(I1– x Br x )3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087.

[23]

Mao, W. X., Hall, C. R., Bernardi, S., Cheng, Y. B., Widmer-Cooper, A., Smith, T. A., Bach, U. (2021). Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20, 55–61.

[24]

Bischak, C. G., Hetherington, C. L., Wu, H., Aloni, S., Ogletree, D. F., Limmer, D. T., Ginsberg, N. S. (2017). Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033.

[25]

Bischak, C. G., Wong, A. B., Lin, E., Limmer, D. T., Yang, P. D., Ginsberg, N. S. (2018). Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005.

[26]

Knight, A. J., Wright, A. D., Patel, J. B., McMeekin, D. P., Snaith, H. J., Johnston, M. B., Herz, L. M. (2019). Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4, 75–84.

[27]

Barker, A. J., Sadhanala, A., Deschler, F., Gandini, M., Senanayak, S. P., Pearce, P. M., Mosconi, E., Pearson, A. J., Wu, Y., Srimath Kandada, A. R., et al. (2017). Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424.

[28]

Belisle, R. A., Bush, K. A., Bertoluzzi, L., Gold-Parker, A., Toney, M. F., McGehee, M. D. (2018). Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Lett. 3, 2694–2700.

[29]

Zheng, Y. T., Wu, X. Y., Liang, J. H., Zhang, Z. F., Jiang, J. K., Wang, J. L., Huang, Y., Tian, C. C., Wang, L. Y., Chen, Z. H., et al. (2022). Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32, 2200431.

[30]

Wang, Z. W., Zeng, L. W., Zhu, T., Chen, H., Chen, B., Kubicki, D. J., Balvanz, A., Li, C. W., Maxwell, A., Ugur, E., et al. (2023). Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79.

[31]

Ji, S. G., Park, I. J., Chang, H., Park, J. H., Hong, G. P., Choi, B. K., Jang, J. H., Choi, Y. J., Lim, H. W., Ahn, Y. J., et al. (2022). Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule 6, 2390–2405.

[32]

Azpiroz, J. M., Mosconi, E., Bisquert, J., De Angelis, F. (2015). Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127.

[33]

Eames, C., Frost, J. M., Barnes, P. R. F., O'Regan, B. C., Walsh, A., Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497.

[34]

Haruyama, J., Sodeyama, K., Han, L. Y., Tateyama, Y. (2015). First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051.

[35]

Futscher, M. H., Lee, J. M., McGovern, L., Muscarella, L. A., Wang, T. Y., Haider, M. I., Fakharuddin, A., Schmidt-Mende, L., Ehrler, B. (2019). Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater. Horiz. 6, 1497–1503.

[36]

Kim, T., Park, S., Iyer, V., Shaheen, B., Choudhry, U., Jiang, Q., Eichman, G., Gnabasik, R., Kelley, K., Lawrie, B., et al. (2023). Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat. Commun. 14, 1846.

[37]

Yuan, Y. B., Huang, J. S. (2016). Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293.

[38]

Knight, A. J., Patel, J. B., Snaith, H. J., Johnston, M. B., Herz, L. M. (2020). Trap states, electric fields, and phase segregation in mixed-halide perovskite photovoltaic devices. Adv. Energy Mater. 10, 1903488.

[39]

Slotcavage, D. J., Karunadasa, H. I., McGehee, M. D. (2016). Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205.

[40]

Jaysankar, M., Raul, B. A. L., Bastos, J., Burgess, C., Weijtens, C., Creatore, M., Aernouts, T., Kuang, Y. H., Gehlhaar, R., Hadipour, A., et al. (2019). Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Lett. 4, 259–264.

[41]

Yoon, S. J., Stamplecoskie, K. G., Kamat, P. V. (2016). How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7, 1368–1373.

[42]

Ruth, A., Brennan, M. C., Draguta, S., Morozov, Y. V., Zhukovskyi, M., Janko, B., Zapol, P., Kuno, M. (2018). Vacancy-mediated anion photosegregation kinetics in mixed halide hybrid perovskites: coupled kinetic Monte Carlo and optical measurements. ACS Energy Lett. 3, 2321–2328.

[43]

Yoon, S. J., Kuno, M., Kamat, P. V. (2017). Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites. ACS Energy Lett. 2, 1507–1514.

[44]

Tang, X. F., van den Berg, M., Gu, E. N., Horneber, A., Matt, G. J., Osvet, A., Meixner, A. J., Zhang, D., Brabec, C. J. (2018). Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18, 2172–2178.

[45]

Zhao, Y. C., Miao, P., Elia, J., Hu, H. Y., Wang, X. X., Heumueller, T., Hou, Y., Matt, G. J., Osvet, A., Chen, Y. T., et al. (2020). Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nat. Commun. 11, 6328.

[46]

Liu, H., Dong, J., Wang, P. Y., Shi, B., Zhao, Y., Zhang, X. D. (2023). Suppressing the photoinduced halide segregation in wide-bandgap perovskite solar cells by strain relaxation. Adv. Funct. Mater. 33, 2303673.

[47]

Knight, A. J., Herz, L. M. (2020). Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046.

[48]

Guo, D. Y., Andaji Garmaroudi, Z., Abdi-Jalebi, M., Stranks, S. D., Savenije, T. J. (2019). Reversible removal of intermixed shallow states by light soaking in multication mixed halide perovskite films. ACS Energy Lett. 4, 2360–2367.

[49]

Nan, G. J., Zhang, X., Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Stranks, S. D., Lu, G., Beljonne, D. (2018). How methylammonium cations and chlorine dopants heal defects in lead iodide perovskites. Adv. Energy Mater. 8, 1702754.

[50]

Zhou, Y., Jia, Y. H., Fang, H. H., Loi, M. A., Xie, F. Y., Gong, L., Qin, M. C., Lu, X. H., Wong, C. P., Zhao, N. (2018). Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Adv. Funct. Mater. 28, 1803130.

[51]

Mathew, P. S., Samu, G. F., Janáky, C., Kamat, P. V. (2020). Iodine (I) expulsion at photoirradiated mixed halide perovskite interface. Should I stay or should I go?. ACS Energy Lett. 5, 1872–1880.

[52]

Sutter-Fella, C. M., Ngo, Q. P., Cefarin, N., Gardner, K. L., Tamura, N., Stan, C. V., Drisdell, W. S., Javey, A., Toma, F. M., Sharp, I. D. (2018). Cation-dependent light-induced halide demixing in hybrid organic–inorganic perovskites. Nano Lett. 18, 3473–3480.

[53]

Cho, J., Kamat, P. V. (2020). How chloride suppresses photoinduced phase segregation in mixed halide perovskites. Chem. Mater. 32, 6206–6212.

[54]

Cho, J., Kamat, P. V. (2021). Photoinduced phase segregation in mixed halide perovskites: thermodynamic and kinetic aspects of Cl–Br segregation. Adv. Opt. Mater. 9, 2001440.

[55]

Rehman, W., McMeekin, D. P., Patel, J. B., Milot, R. L., Johnston, M. B., Snaith, H. J., Herz, L. M. (2017). Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369.

[56]

Xie, Y. M., Yao, Q., Zeng, Z. X., Xue, Q. F., Niu, T. Q., Xia, R. X., Cheng, Y. H., Lin, F., Tsang, S. W., Jen, A. K. Y., et al. (2022). Homogeneous grain boundary passivation in wide-bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32, 2112126.

[57]
Li, X. H., Li, Y. F., Feng, Y. X., Qi, J. H., Shen, J. L., Shi, G. D., Yang, S. P., Yuan, M. J., He, T. W. (2024). Strain regulation of mixed-halide perovskites enables high-performance wide-bandgap photovoltaics. Adv. Mater. in press.
[58]

Qiu, Z. W., Xu, Z. Q., Li, N. X., Zhou, N., Chen, Y. H., Wan, X. X., Liu, J. L., Li, N., Hao, X. T., Bi, P. Q., et al. (2018). Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber. Nano Energy 53, 798–807.

[59]

Chen, S., Hou, Y., Chen, H. W., Tang, X. F., Langner, S., Li, N., Stubhan, T., Levchuk, I., Gu, E. N., Osvet, A., et al. (2018). Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. Adv. Energy Mater. 8, 1701543.

[60]

Prasanna, R., Gold-Parker, A., Leijtens, T., Conings, B., Babayigit, A., Boyen, H. G., Toney, M. F., McGehee, M. D. (2017). Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124.

[61]

Palmstrom, A. F., Eperon, G. E., Leijtens, T., Prasanna, R., Habisreutinger, S. N., Nemeth, W., Gaulding, E. A., Dunfield, S. P., Reese, M., Nanayakkara, S., et al. (2019). Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204.

[62]

Stoddard, R. J., Rajagopal, A., Palmer, R. L., Braly, I. L., Jen, A. K. Y., Hillhouse, H. W. (2018). Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett. 3, 1261–1268.

[63]

Wen, J., Zhao, Y. C., Liu, Z., Gao, H., Lin, R. X., Wan, S. S., Ji, C. L., Xiao, K., Gao, Y., Tian, Y. X., et al. (2022). Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34, 2110356.

[64]

Williams, S. T., Zuo, F., Chueh, C. C., Liao, C. Y., Liang, P. W., Jen, A. K. Y. (2014). Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8, 10640–10654.

[65]

Tidhar, Y., Edri, E., Weissman, H., Zohar, D., Hodes, G., Cahen, D., Rybtchinski, B., Kirmayer, S. (2014). Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256.

[66]

Yu, H., Wang, F., Xie, F. Y., Li, W. W., Chen, J., Zhao, N. (2014). The role of chlorine in the formation process of “CH3NH3PbI3-xClx” perovskite. Adv. Funct. Mater. 24, 7102–7108.

[67]

Xu, J. X., Boyd, C. C., Yu, Z. J., Palmstrom, A. F., Witter, D. J., Larson, B. W., France, R. M., Werner, J., Harvey, S. P., Wolf, E. J., et al. (2020). Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104.

[68]

Su, G. F., Yu, R. N., Dong, Y. M., He, Z. W., Zhang, Y. L., Wang, R. Y., Dang, Q., Sha, S. H., Lv, Q. L., Xu, Z. Y., et al. (2024). Crystallization regulation and defect passivation for efficient inverted wide-bandgap perovskite solar cells with over 21% efficiency. Adv. Energy Mater. 14, 2303344.

[69]

Xu, Q. J., Shi, B., Li, Y. C., Liu, J. J., Li, Y. X., SunLi, Z. T., Liu, P. F., Zhang, Y. B., Sun, C., Han, W., et al. (2024). Diffusible capping layer enabled homogeneous crystallization and component distribution of hybrid sequential deposited perovskite. Adv. Mater. 36, 2308692.

[70]

Luo, X., Luo, H. W., Li, H. J., Xia, R., Zheng, X. T., Huang, Z. L., Liu, Z., Gao, H., Zhang, X. L., Li, S. L., et al. (2023). Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35, 2207883.

[71]

Zhan, Y., Yang, F., Chen, W. J., Chen, H. Y., Shen, Y. X., Li, Y. W., Li, Y. F. (2021). Elastic lattice and excess charge carrier manipulation in 1D–3D perovskite solar cells for exceptionally long-term operational stability. Adv. Mater. 33, 2105170.

[72]

Zhu, W. K., Wang, S. R., Zhang, X., Wang, A. L., Wu, C., Hao, F. (2022). Ion migration in organic–inorganic hybrid perovskite solar cells: current understanding and perspectives. Small 18, 2105783.

[73]

Lao, Y. N., Yang, S., Yu, W. J., Guo, H. Q., Zou, Y., Chen, Z. J., Xiao, L. X. (2022). Multifunctional π-conjugated additives for halide perovskite. Adv. Sci. 9, 2105307.

[74]

Zhang, C., Li, H. Y., Gong, C., Zhuang, Q. X., Chen, J. Z., Zang, Z. G. (2023). Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 3825–3836.

[75]

Liu, Z. H., Wang, L., Liu, X., Xie, X. Y., Chen, P. (2024). Crystallization control of wide-bandgap perovskites for efficient solar cells via adding an anti-solvent into the perovskite precursor. Nanoscale 16, 7670–7677.

[76]

Kim, S. G., Kim, J. H., Ramming, P., Zhong, Y., Schötz, K., Kwon, S. J., Huettner, S., Panzer, F., Park, N. G. (2021). How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties. Nat. Commun. 12, 1554.

[77]

Bush, K. A., Rolston, N., Gold-Parker, A., Manzoor, S., Hausele, J., Yu, Z. J., Raiford, J. A., Cheacharoen, R., Holman, Z. C., Toney, M. F., et al. (2018). Controlling thin-film stress and wrinkling during perovskite film formation. ACS Energy Lett. 3, 1225–1232.

[78]

Zhang, R. K., Li, L. C., Wang, W. R., Wu, Z. J., Wang, Y., Hong, J., Rao, H. S., Pan, Z. X., Zhong, X. H. (2023). Pure-iodide wide-bandgap perovskites for high-efficiency solar cells by crystallization control. Adv. Funct. Mater. 33, 2300552.

[79]

Wang, R. H., Zhu, J. W., You, J. Y., Huang, H., Yang, Y., Chen, R. H., Wang, J. C., Xu, Y. L., Gao, Z. Y., Chen, J. Y., et al. (2024). Custom-tailored solvent engineering for efficient wide-bandgap perovskite solar cells with a wide processing window and low VOC losses. Energy Environ. Sci. 17, 2662–2669.

[80]

Shen, X. Y., Gallant, B. M., Holzhey, P., Smith, J. A., Elmestekawy, K. A., Yuan, Z. C., Rathnayake, P. V. G. M., Bernardi, S., Dasgupta, A., Kasparavicius, E., et al. (2023). Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells. Adv. Mater. 35, 2211742.

[81]

Guan, H. L., Zhou, S., Fu, S. Q., Pu, D. X., Chen, X. P., Ge, Y. S., Wang, S. X., Wang, C., Cui, H. S., Liang, J. W., et al. (2024). Regulating crystal orientation via ligand anchoring enables efficient wide-bandgap perovskite solar cells and tandems. Adv. Mater. 36, 2307987.

[82]

An, Y. D., Zhang, N., Zeng, Z. X., Cai, Y. T., Jiang, W. L., Qi, F., Ke, L. Y., Lin, F. R., Tsang, S. W., Shi, T. T., et al. (2024). Optimizing crystallization in wide-bandgap mixed halide perovskites for high-efficiency solar cells. Adv. Mater. 36, 2306568.

[83]

Zhang, Z. C., Chen, W. J., Jiang, X. X., Cao, J. L., Yang, H. D., Chen, H. Y., Yang, F., Shen, Y. X., Yang, H. Y., Cheng, Q. R., et al. (2024). Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9, 592–601.

[84]

Yu, Y., Liu, R., Zhang, F., Liu, C., Wu, Q. F., Zhang, M., Yu, H. (2022). Potassium tetrafluoroborate-induced defect tolerance enables efficient wide-bandgap perovskite solar cells. J. Colloid Interface Sci. 605, 710–717.

[85]

Wang, C. L., Zhao, Y., Ma, T. S., An, Y. D., He, R., Zhu, J. W., Chen, C., Ren, S. Q., Fu, F., Zhao, D. W., et al. (2022). A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7, 744–753.

[86]

Jiang, Q., Tong, J. H., Scheidt, R. A., Wang, X. M., Louks, A. E., Xian, Y. M., Tirawat, R., Palmstrom, A. F., Hautzinger, M. P., Harvey, S. P., et al. (2022). Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300.

[87]

Chen, J. Z., Park, N. G. (2019). Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, 1803019.

[88]

Chen, J. Z., Park, N. G. (2020). Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5, 2742–2786.

[89]

Wang, C., Shao, W. L., Liang, J. W., Chen, C., Hu, X. Z., Cui, H. S., Liu, C. W., Fang, G. J., Tao, C. (2022). Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small 18, 2204081.

[90]

Nie, T., Yang, J. J., Fang, Z. M., Xu, Z., Ren, X. D., Guo, X., Chen, T., Liu, S. Z. (2023). Amino-acid-type alkylamine additive for high-performance wide-bandgap perovskite solar cells. Chem. Eng. J. 468, 143341.

[91]

Hou, Y., Aydin, E., De Bastiani, M., Xiao, C. X., Isikgor, F. H., Xue, D. J., Chen, B., Chen, H., Bahrami, B., Chowdhury, A. H., et al. (2020). Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140.

[92]

Wen, J., Zhao, Y. C., Wu, P., Liu, Y. X., Zheng, X. T., Lin, R. X., Wan, S. S., Li, K., Luo, H. W., Tian, Y. X., et al. (2023). Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Nat. Commun. 14, 7118.

[93]

Wu, W. Q., Rudd, P. N., Ni, Z. Y., Van Brackle, C. H., Wei, H. T., Wang, Q., Ecker, B. R., Gao, Y. L., Huang, J. S. (2020). Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 142, 3989–3996.

[94]

Ma, L., Guo, D. Q., Li, M. T., Wang, C., Zhou, Z. L., Zhao, X., Zhang, F. T., Ao, Z. M., Nie, Z. G. (2019). Temperature-dependent thermal decomposition pathway of organic–inorganic halide perovskite materials. Chem. Mater. 31, 8515–8522.

[95]

Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D'Haen, J., D'Olieslaeger, L., Ethirajan, A., Verbeeck, J., Manca, J., Mosconi, E., et al. (2015). Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477.

[96]

Li, S., Zheng, Z., Ju, J. Q., Cheng, S. Y., Chen, F. Y., Xue, Z. X., Ma, L., Wang, Z. P. (2024). A generic strategy to stabilize wide bandgap perovskites for efficient tandem solar cells. Adv. Mater. 36, 2307701.

[97]

Isikgor, F. H., Furlan, F., Liu, J., Ugur, E., Eswaran, M. K., Subbiah, A. S., Yengel, E., De Bastiani, M., Harrison, G. T., Zhumagali, S., et al. (2021). Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586.

[98]

Liu, Z., Zhu, C. H., Luo, H. W., Kong, W. C., Luo, X., Wu, J. L., Ding, C. Z., Chen, Y. Y., Wang, Y. R., Wen, J., et al. (2023). Grain regrowth and bifacial passivation for high-efficiency wide-bandgap perovskite solar cells. Adv. Energy Mater. 13, 2203230.

[99]

Chen, J. Z., Lee, D., Park, N. G. (2017). Stabilizing the Ag electrode and reducing J V hysteresis through suppression of iodide migration in perovskite solar cells. ACS Appl. Mater. Interfaces 9, 36338–36349.

[100]

Mathew, P. S., Szabó, G., Kuno, M., Kamat, P. V. (2022). Phase segregation and sequential expulsion of iodide and bromide in photoirradiated ruddlesden–popper 2D perovskite films. ACS Energy Lett. 7, 3982–3988.

[101]

Cho, J., Mathew, P. S., DuBose, J. T., Kamat, P. V. (2021). Photoinduced halide segregation in ruddlesden–popper 2D mixed halide perovskite films. Adv. Mater. 33, 2105585.

[102]

Gao, Y. P., Dong, X. Y., Liu, Y. S. (2023). Recent progress of layered perovskite solar cells incorporating aromatic spacers. Nano-Micro Lett. 15, 169.

[103]
Wang, Y. J., Li, D. X., Xing, Z., Li, J. L., Hu, X. T., Hu, T., Chen, Y. W. (2024). Quantum well growth management to smooth the energy transfer pathway for quasi-2D perovskite solar cells. Adv. Funct. Mater. in press.
[104]

Datta, K., Caiazzo, A., Hope, M. A., Li, J. Y., Mishra, A., Cordova, M., Chen, Z. H., Emsley, L., Wienk, M. M., Janssen, R. A. J. (2023). light-induced halide segregation in 2D and quasi-2D mixed-halide perovskites. ACS Energy Lett. 8, 1662–1670.

[105]

Mathew, P. S., DuBose, J. T., Cho, J., Kamat, P. V. (2021). Spacer cations dictate photoinduced phase segregation in 2D mixed halide perovskites. ACS Energy Lett. 6, 2499–2501.

[106]

Nandi, P., Giri, C., Swain, D., Manju, U., Mahanti, S. D., Topwal, D. (2018). Temperature dependent photoinduced reversible phase separation in mixed-halide perovskite. ACS Appl. Energy Mater. 1, 3807–3814.

[107]

Elmelund, T., Seger, B., Kuno, M., Kamat, P. V. (2020). How interplay between photo and thermal activation dictates halide ion segregation in mixed halide perovskites. ACS Energy Lett. 5, 56–63.

Energy Materials and Devices
Article number: 9370037
Cite this article:
Yu Y, Liu X, Zhang S, et al. Photoinduced phase segregation in wide-bandgap mixed-halide perovskite solar cells. Energy Materials and Devices, 2024, 2(2): 9370037. https://doi.org/10.26599/EMD.2024.9370037

1038

Views

361

Downloads

0

Crossref

Altmetrics

Received: 29 April 2024
Revised: 21 May 2024
Accepted: 30 May 2024
Published: 24 June 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return