AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Dimethyl acridine-based self-assembled monolayer as a hole transport layer for highly efficient inverted perovskite solar cells

Liufei Li1,2,Rongyao Lv2,Guiqi Zhang1,Bing Cai1( )Xin Yu2Yandong Wang1,2Shantao Zhang2Xiaofen Jiang2Xinyu Li2Shuang Gao2Xue Wang2Ziqi Hu2Wen-Hua Zhang1,3( )Shangfeng Yang2( )
Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650504, China
Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Southwest United Graduate School, Kunming 650092, China

Liufei Li, Rongyao Lv, and Guiqi Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Self-assembled monolayers (SAMs) have recently emerged as excellent hole transport materials in inverted perovskite solar cells (PSCs) owing to their ability to minimize parasitic absorption, regulate energy level alignment, and passivate perovskite defects. Herein, we design and synthesize a novel dimethyl acridine-based SAM, [2-(9,10-dihydro-9,9-dimethylacridine-10-yl)ethyl]phosphonic acid (2PADmA), and employ it as a hole-transporting layer in inverted PSCs. Experimental results show that the 2PADmA SAM can modulate perovskite crystallization, facilitate carrier transport, passivate perovskite defects, and reduce nonradiative recombination. Consequently, the 2PADmA-based device achieves an enhanced power conversion efficiency (PCE) of 24.01% and an improved fill factor (FF) of 83.92% compared to the commonly reported [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz)-based control device with a PCE of 22.32% and FF of 78.42%, while both devices exhibit comparable open-circuit voltage and short-circuit current density. In addition, 2PADmA-based devices exhibit outstanding dark storage and thermal stabilities, retaining approximately ~98% and 87% of their initial PCEs after 1080 h of dark storage and 400 h of heating at 85 °C, respectively, both considerably superior to the control device.

Electronic Supplementary Material

Download File(s)
EMD20240038_ESM.pdf (1.1 MB)

References

[1]

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051.

[2]

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647.

[3]

Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319.

[4]

Cai, B., Xing, Y. D., Yang, Z., Zhang, W. H., Qiu, J. S. (2013). High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480–1485.

[5]

Rakstys, K., Igci, C., Nazeeruddin, M. K. (2019). Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chem. Sci. 10, 6748–6769.

[6]

Luo, D. Y., Su, R., Zhang, W., Gong, Q. H., Zhu, R. (2020). Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60.

[7]

Chen, Y., Lin, P. A., Cai, B., Zhang, W. H. (2023). Research progress of inorganic Hole transport materials in perovskite solar cells. J. Inorg. Mater. 38, 991–1004.

[8]

Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., et al. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591.

[9]

Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903.

[10]

Liu, M. Z., Johnston, M. B., Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398.

[11]

Chen, Y., Yang, Z., Wang, S. B., Zheng, X. J., Wu, Y. H., Yuan, N. Y., Zhang, W. H., Liu, S. Z. (2018). Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 30, 1805660.

[12]

Jiang, Q., Tong, J. H., Xian, Y. M., Kerner, R. A., Dunfield, S. P., Xiao, C. X., Scheidt, R. A., Kuciauskas, D., Wang, X. M., Hautzinger, M. P. et al. (2022). Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283.

[13]

Príncipe, J., Duarte, V. C. M., Andrade, L. (2022). Inverted perovskite solar cells: the emergence of a highly stable and efficient architecture. Energy Technol. 10, 2100952.

[14]

Liu, S. W., Biju, V. P., Qi, Y. B., Chen, W., Liu, Z. H. (2023). Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Mater. 15, 27.

[15]

Anoop, K. M., Ahipa, T. N. (2023). Recent advancements in the hole transporting layers of perovskite solar cells. Sol. Energy 263, 111937.

[16]

Bi, C., Wang, Q., Shao, Y. C., Yuan, Y. B., Xiao, Z. G., Huang, J. S. (2015). Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747.

[17]

Boyd, C. C., Shallcross, R. C., Moot, T., Kerner, R., Bertoluzzi, L., Onno, A., Kavadiya, S., Chosy, C., Wolf, E. J., Werner, J. et al. (2020). Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775.

[18]

Norrman, K., Madsen, M. V., Gevorgyan, S. A., Krebs, F. C. (2010). Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 132, 16883–16892.

[19]

Kim, S. Y., Cho, S. J., Byeon, S. E., He, X., Yoon, H. J. (2020). Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10, 2002606.

[20]

Liu, M., Bi, L. Y., Jiang, W. L., Zeng, Z. X., Tsang, S. W., Lin, F. R., Jen, A. K. Y. (2023). Compact hole-selective self-assembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells. Adv. Mater. 35, 2304415.

[21]

Ali, F., Roldán-Carmona, C., Sohail, M., Nazeeruddin, M. K. (2020). Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10, 2002989.

[22]

Al-Ashouri, A., Magomedov, A., Roß, M., Jošt, M., Talaikis, M., Chistiakova, G., Bertram, T., Márquez, J. A., Köhnen, E., Kasparavičius, E. et al. (2019). Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369.

[23]

Wang, Y., Ye, S. Y., Lim, J. W. M., Giovanni, D., Feng, M. J., Fu, J. H., Krishnamoorthy, H. N. S., Zhang, Q. N., Xu, Q., Cai, R. et al. (2023). Carrier multiplication in perovskite solar cells with internal quantum efficiency exceeding 100%. Nat. Commun. 14, 6293.

[24]

Park, S. M., Wei, M. Y., Lempesis, N., Yu, W. J., Hossain, T., Agosta, L., Carnevali, V., Atapattu, H. R., Serles, P., Eickemeyer, F. T. et al. (2023). Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294.

[25]

Vidyasagar, D., Yun, Y., Yu Cho, J., Lee, H., Won Kim, K., Tae Kim, Y., Woong Yang, S., Jung, J., Chang Choi, W., Kim, S. et al. (2024). Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells. J. Energy Chem. 88, 317–326.

[26]

Lai, H. G., Luo, J. C., Zwirner, Y., Olthof, S., Wieczorek, A., Ye, F. Y., Jeangros, Q., Yin, X. X., Akhundova, F., Ma, T. S. et al. (2022). High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Adv. Energy Mater. 12, 2202438.

[27]

Kim, D. H., Lee, S., Kim, G. M., Oh, S. Y. (2023). Physical effects of 2PACz layers as hole-transport material on the performance of perovskite solar cell. Electron. Mater. Lett. 19, 510–517.

[28]

Tan, Y., Chang, X. Q., Zhong, J. X., Feng, W. H., Yang, M. F., Tian, T., Gong, L., Wu, W. Q. (2023). Chemical linkage and passivation at buried interface for thermally stable inverted perovskite solar cells with efficiency over 22%. CCS Chem. 5, 1802–1814.

[29]

Wang, G. L., Zheng, J. H., Duan, W. Y., Yang, J., Mahmud, M. A., Lian, Q., Tang, S., Liao, C., Bing, J. M., Yi, J. P. et al. (2023). Molecular engineering of hole-selective layer for high band gap perovskites for highly efficient and stable perovskite-silicon tandem solar cells. Joule 7, 2583–2594.

[30]

Mao, L., Yang, T., Zhang, H., Shi, J. H., Hu, Y. C., Zeng, P., Li, F. M., Gong, J., Fang, X. Y., Sun, Y. Q. et al. (2022). Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34, 2206193.

[31]

Tan, Q., Li, Z. N., Luo, G. F., Zhang, X. S., Che, B., Chen, G. C., Gao, H., He, D., Ma, G. Q., Wang, J. F. et al. (2023). Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551.

[32]

Xie, J. S., Yan, K. Y., Zhu, H. Y., Li, G. X., Wang, H., Zhu, H. P., Hang, P. J., Zhao, S. H., Guo, W. Y., Ye, D. Q. et al. (2020). Identifying the functional groups effect on passivating perovskite solar cells. Sci. Bull. 65, 1726–1734.

[33]

Cho, S. P., Lee, H. J., Kang, Y. J., Seo, Y. H., Na, S. I. (2022). More effective perovskite surface passivation strategy via optimized functional groups enables efficient p-i-n perovskite solar cells. Appl. Surf. Sci. 602, 154248.

[34]

Lin, Y. B., Magomedov, A., Firdaus, Y., Kaltsas, D., El-Labban, A., Faber, H., Naphade, D. R., Yengel, E., Zheng, X. P., Yarali, E. et al. (2021). 18.4 % Organic solar cells using a high ionization energy self-assembled monolayer as hole-extraction interlayer. ChemSusChem 14, 3569–3578.

[35]

Kang, M. S., Ma, H., Yip, H. L., A. Jen, K. Y. (2007). Direct surface functionalization of indium tin oxide via electrochemically induced assembly. J. Mater. Chem. 17, 3489–3492.

[36]

Kapil, G., Bessho, T., Sanehira, Y., Sahamir, S. R., Chen, M. M., Baranwal, A. K., Liu, D., Sono, Y., Hirotani, D., Nomura, D. et al. (2022). Tin–lead perovskite solar cells fabricated on hole selective monolayers. ACS Energy Lett. 7, 966–974.

[37]

Li, Z., Sun, X. L., Zheng, X. P., Li, B., Gao, D. P., Zhang, S. F., Wu, X., Li, S., Gong, J. Q., Luther, J. M. et al. (2023). Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289.

[38]

Zhang, J. Q., Yang, J., Dai, R. Y., Sheng, W. P., Su, Y., Zhong, Y., Li, X., Tan, L. C., Chen, Y. W. (2022). Elimination of interfacial lattice mismatch and detrimental reaction by self-assembled layer dual-passivation for efficient and stable inverted perovskite solar cells. Adv. Energy Mater. 12, 2103674.

[39]

Ma, W. B., Zhang, Z. L., Liu, Y. F., Gao, H. P., Mao, Y. L. (2023). Highly efficient and stable quasi two-dimensional perovskite solar cells via synergistic effect of dual additives. J. Colloid Interface Sci. 646, 922–931.

[40]

Zhang, C. Q., Ren, X. D., He, X. L., Zhang, Y. X., Liu, Y. C., Feng, J. S., Gao, F., Yuan, N. Y., Ding, J. N., Liu, S. Z. (2022). Post-treatment by an ionic tetrabutylammonium hexafluorophosphate for improved efficiency and stability of perovskite solar cells. J. Energy Chem. 64, 8–15.

[41]

Choi, H., Liu, X. Y., Kim, H. I., Kim, D., Park, T., Song, S. (2021). A facile surface passivation enables thermally stable and efficient planar perovskite solar cells using a novel IDTT-based small molecule additive. Adv. Energy Mater. 11, 2003829.

[42]

Bi, D. Q., Gao, P., Scopelliti, R., Oveisi, E., Luo, J. S., Grätzel, M., Hagfeldt, A., Nazeeruddin, M. K. (2016). High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 28, 2910–2915.

[43]

Jiang, X. F., Wang, X., Wu, X., Zhang, S. F., Liu, B. Z., Zhang, D., Li, B., Xiao, P., Xu, F., Lu, H. P. et al. (2023). Strain regulation via pseudo halide-based ionic liquid toward efficient and stable α-FAPbI3 inverted perovskite solar cells. Adv. Energy Mater. 13, 2300700.

[44]

Wu, X., Gao, D. P., Sun, X. L., Zhang, S. F., Wang, Q., Li, B., Li, Z., Qin, M. C., Jiang, X. F., Zhang, C. L. et al. (2023). Backbone engineering enables highly efficient polymer hole-transporting materials for inverted perovskite solar cells. Adv. Mater. 35, 2208431.

[45]

Zhang, B., Oh, J., Sun, Z., Cho, Y., Jeong, S., Chen, X., Sun, K., Li, F., Yang, C., Chen, S. S. (2023). Buried guanidinium passivator with favorable binding energy for perovskite solar cells. ACS Energy Lett. 8, 1848–1856.

[46]

Li, X. C., Wu, X., Li, B., Cen, Z. Y., Shang, Y. B., Lian, W. T., Cao, R., Jia, L. B., Li, Z., Gao, D. P. et al. (2022). Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%. Energy Environ. Sci. 15, 4813–4822.

[47]

Park, B. W., Kwon, H. W., Lee, Y., Lee, D. Y., Kim, M. G., Kim, G., Kim, K. J., Kim, Y. K., Im, J., Shin, T. J. et al. (2021). Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6, 419–428.

[48]

An, Q. Z., Paulus, F., Becker-Koch, D., Cho, C., Sun, Q., Weu, A., Bitton, S., Tessler, N., Vaynzof, Y. (2021). Small grains as recombination hot spots in perovskite solar cells. Matter 4, 1683–1701.

[49]

Jiang, Z. Y., Du, T., Lin, C. T., Macdonald, T. J., Chen, J. Y., Chin, Y. C., Xu, W. D., Ding, B. W., Kim, J. S., Durrant, J. R. et al. (2023). Deciphering the role of hole transport layer HOMO level on the open circuit voltage of perovskite solar cells. Adv. Mater. Interfaces 10, 2201737.

[50]

Li, Y., Nie, T., Ren, X. D., Wu, Y., Zhang, J., Zhao, P. J., Yao, Y. Y., Liu, Y. C., Feng, J. S., Zhao, K. et al. (2024). In situ formation of 2D perovskite seeding for record-efficiency indoor perovskite photovoltaic devices. Adv. Mater. 36, 2306870.

[51]

Zheng, X. P., Hou, Y., Bao, C. X., Yin, J., Yuan, F. L., Huang, Z. R., Song, K. P., Liu, J. K., Troughton, J., Gasparini, N. et al. (2020). Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140.

[52]

Rombach, F. M., Haque, S. A., Macdonald, T. J. (2021). Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190.

[53]

Canil, L., Cramer, T., Fraboni, B., Ricciarelli, D., Meggiolaro, D., Singh, A., Liu, M. N., Rusu, M., Wolff, C. M., Phung, N. et al. (2021). Tuning halide perovskite energy levels. Energy Environ. Sci. 14, 1429–1438.

[54]

Wang, P., Wu, Y. H., Cai, B., Ma, Q. S., Zheng, X. J., Zhang, W. H. (2019). Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv. Funct. Mater. 29, 1807661.

[55]

He, X. L., Chen, J. Z., Ren, X. D., Zhang, L., Liu, Y. C., Feng, J. S., Fang, J. J., Zhao, K., Liu, S. Z. (2021). 40.1% Record low-light solar-cell efficiency by holistic trap-passivation using micrometer-thick perovskite film. Adv. Mater. 33, 2100770.

[56]

Zhao, X. M., Tian, L. X., Liu, T. J., Liu, H. L., Wang, S. R., Li, X. G., Fenwick, O., Lei, S. B., Hu, W. P. (2019). Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. J. Mater. Chem. A 7, 1509–1518.

[57]

Meng, L., Sun, C. K., Wang, R., Huang, W. C., Zhao, Z. P., Sun, P. Y., Huang, T. Y., Xue, J. J., Lee, J. W., Zhu, C. H. et al. (2018). Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140, 17255–17262.

[58]

Chen, W., Wu, Y. Z., Yue, Y. F., Liu, J., Zhang, W. J., Yang, X. D., Chen, H., Bi, E. B., Ashraful, I., Grätzel, M. et al. (2015). Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science. 350, 944–948.

[59]

Yu, X., Lv, Y. H., Xue, B. Y., Wang, L., Hu, W. P., Liu, X. H., Yang, S. F., Zhang, W. H. (2022). Multiple bonding effects of 1-methanesulfonyl-piperazine on the two-step processed perovskite towards efficient and stable solar cells. Nano Energy 93, 106856.

[60]

Chen, B., Rudd, P. N., Yang, S., Yuan, Y. B., Huang, J. S. (2019). Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867.

[61]

Zhao, W. J., Lin, H., Li, Y., Wang, D. P., Wang, J., Liu, Z. K., Yuan, N. Y., Ding, J. N., Wang, Q., Liu, S. Z. (2022). Symmetrical acceptor–donor–acceptor molecule as a versatile defect passivation agent toward efficient FA0.85MA0.15PbI3 perovskite solar cells. Adv. Funct. Mater. 32, 2112032.

[62]

Zhao, W. J., Wu, M. Z., Liu, Z. K., Yang, S. M., Li, Y., Wang, J. G., Yang, L., Han, Y., Liu, S. Z. (2023). Orientation engineering via 2D seeding for stable 24.83% efficiency perovskite solar cells. Adv. Energy Mater. 13, 2204260.

[63]

Gao, Z. W., Wang, Y., Choy, W. C. H. (2022). Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12, 2104030.

[64]

Sajedi Alvar, M., Blom, P. W. M., Wetzelaer, G. J. A. H. (2020). Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites. Nat. Commun. 11, 4023.

[65]

Al-Ashouri, A., Köhnen, E., Li, B. R., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J. A., Morales Vilches, A. B., Kasparavicius, E., Smith, J. A. et al. (2020). Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309.

[66]

Fang, Z. M., Jia, L. B., Yan, N., Jiang, X. F., Ren, X. D., Yang, S. F., Liu, S. Z. (2022). Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells. InfoMat 4, e12307.

[67]

Peng, W., Mao, K. T., Cai, F. C., Meng, H. G., Zhu, Z. J., Li, T. Q., Yuan, S. J., Xu, Z. J., Feng, X. Y., Xu, J. H. et al. (2023). Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690.

[68]

Yang, L., Jin, Y. B., Fang, Z., Zhang, J. Y., Nan, Z. A., Zheng, L. F., Zhuang, H. H., Zeng, Q. H., Liu, K. K., Deng, B. R. et al. (2023). Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15, 111.

[69]

Zhao, P., He, D., Li, S., Cui, H., Yang, Y., Chen, W., Salah, A., Feng, Y., Zhang, B. (2024). Design of a unique hole-transporting molecule via introducing a chloro-involved chelating moiety for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 34, 2308795.

Energy Materials and Devices
Article number: 9370038
Cite this article:
Li L, Lv R, Zhang G, et al. Dimethyl acridine-based self-assembled monolayer as a hole transport layer for highly efficient inverted perovskite solar cells. Energy Materials and Devices, 2024, 2(2): 9370038. https://doi.org/10.26599/EMD.2024.9370038

1015

Views

254

Downloads

0

Crossref

Altmetrics

Received: 01 May 2024
Revised: 21 May 2024
Accepted: 03 June 2024
Published: 25 June 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return