AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

V-doped Co-free Li-rich layered oxide with enhanced oxygen redox reversibility for excellent voltage stability and high initial Coulombic efficiency

Liping Tan1Wenzhao Huang1Xiaoyan Xie1Xiaola Li1Ziyang Liang1Zhan Lin1,3Chenyu Liu1,3( )Dong Luo1,2( )
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
Show Author Information

Graphical Abstract

Abstract

Li-rich Mn-based oxides (LRMOs) hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity. Nevertheless, the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay. Herein, a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH4VO3. The layered-spinel coherent layer with 3D ion channels enhanced Li+ diffusion efficiency, mitigates surface–interface reactions and suppresses irreversible oxygen release. Notably, V-doping significantly reduces the Bader charge of oxygen atoms, thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox. The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%, significantly surpassing that of the original LRMO (74.4%). Furthermore, the treated sample showes an impressive capacity retention rate of 91.9% after 200 cycles, accompanied by a voltage decay of merely 0.47 mV per cycle. The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency, voltage stability, and capacity stability of LRMO cathode materials, thus holding considerable promise for the development of high-energy Li-ion batteries.

Electronic Supplementary Material

Download File(s)
EMD20240039_ESM.pdf (1.9 MB)

References

[1]

Li, M., Lu, J., Chen, Z. W., Amine, K. (2018). 30 Years of lithium-ion batteries. Adv. Mater. 30, 1800561.

[2]

Choi, J. U., Voronina, N., Sun, Y. K., Myung, S. T. (2020). Recent progress and perspective of advanced high-energy co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow. Adv. Energy Mater. 10, 2002027.

[3]

Xie, J., Lu, Y. C. (2020). A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499.

[4]

Li, J. K., Ma, Z. F. (2019). Past and present of LiFePO4: from fundamental research to industrial applications. Chem 5, 3–6.

[5]

Wright, A. G., Fan, J. T., Britton, B., Weissbach, T., Lee, H. F., Kitching, E. A., Peckham, T. J., Holdcroft, S. (2016). Hexamethyl- p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Environ. Sci. 9, 2130–2142.

[6]

Yang, S. Y., Yan, P., Bao, W. D., Zhu, H. Y., Cai, X. C., Zhao, L. Q., Zhang, Y., Lin, W. Y., Deng, Y. D., Wu, Y. F., et al. (2023). Surface magnesium substitution at spinel lithium manganate 8a tetrahedral sites for suppressed manganese dissolution and enhanced cycle stability. ACS Energy Lett. 8, 4278–4286.

[7]

Ko, G., Jeong, S., Park, S., Lee, J., Kim, S., Shin, Y., Kim, W., Kwon, K. (2023). Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries. Energy Storage Mater. 60, 102840.

[8]

Park, G. T., Ryu, H. H., Noh, T. C., Kang, G. C., Sun, Y. K. (2022). Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries. Mater. Today 52, 9–18.

[9]

Zuo, W. H., Luo, M. Z., Liu, X. S., Wu, J., Liu, H. D., Li, J., Winter, M., Fu, R. Q., Yang, W. L., Yang, Y. (2020). Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy Environ. Sci. 13, 4450–4497.

[10]

Kim, Y., Seong, W. M., Manthiram, A. (2021). Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. Energy Storage Mater. 34, 250–259.

[11]

He, W., Guo, W. B., Wu, H. L., Lin, L., Liu, Q., Han, X., Xie, Q. S., Liu, P. F., Zheng, H. F., Wang, L. S., et al. (2021). Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries (Adv. Mater. 50/2021). Adv. Mater. 33, 2170395.

[12]

Li, H. Y., Cormier, M., Zhang, N., Inglis, J., Li, J., Dahn, J. R. (2019). Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries. J. Electrochem. Soc. 166, A429–A439.

[13]

Liu, T. C., Yu, L., Liu, J. J., Lu, J., Bi, X. X., Dai, A., Li, M., Li, M. F., Hu, Z. X., Ma, L., et al. (2021). Understanding co roles towards developing co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286.

[14]

Zhang, K., Li, B., Zuo, Y. X., Song, J., Shang, H. F., Ning, F. H., Xia, D. G. (2019). Voltage decay in layered Li-rich Mn-based cathode materials. Electrochem. Energy Rev. 2, 606–623.

[15]

Jiang, W. J., Zhang, C. X., Feng, Y. Z., Wei, B., Chen, L. B., Zhang, R. F., Ivey, D. G., Wang, P., Wei, W. F. (2020). Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy Storage Mater. 32, 37–45.

[16]

Abdel-Ghany, A., Hashem, A. M., Mauger, A., Julien, C. M. (2020). Lithium-rich cobalt-free manganese-based layered cathode materials for Li-ion batteries: suppressing the voltage fading. Energies 13, 3487.

[17]

Ding, X. K., Luo, D., Cui, J. X., Xie, H. X., Ren, Q. Q., Lin, Z. (2020). An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem. 59, 7778–7782.

[18]

Luo, D., Zhu, H., Xia, Y., Yin, Z. J., Qin, Y., Li, T. Y., Zhang, Q. H., Gu, L., Peng, Y., Zhang, J. W., et al. (2023). A Li-rich layered oxide cathode with negligible voltage decay. Nat. Energy 8, 1078–1087.

[19]

Yu, H. J., Ishikawa, R., So, Y. G., Shibata, N., Kudo, T., Zhou, H. S., Ikuhara, Y. (2013). Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem. Int. Ed. 52, 5969–5973.

[20]

Rana, J., Papp, J. K., Lebens-Higgins, Z., Zuba, M., Kaufman, L. A., Goel, A., Schmuch, R., Winter, M., Whittingham, M. S., Yang, W. L., et al. (2020). Quantifying the capacity contributions during activation of Li2MnO3. ACS Energy Lett. 5, 634–641.

[21]

Sun, C. L., Liao, X. B., Xia, F. J., Zhao, Y., Zhang, L., Mu, S., Shi, S. S., Li, Y. X., Peng, H. Y., Van Tendeloo, G., et al. (2020). High-voltage cycling induced thermal vulnerability in LiCoO2 cathode: cation loss and oxygen release driven by oxygen vacancy migration. ACS Nano 14, 6181–6190.

[22]

Sharifi-Asl, S., Lu, J., Amine, K., Shahbazian-Yassar, R. (2019). Oxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv. Energy Mater. 9, 1900551.

[23]

Huang, W. Y., Zhang, M. J., Ge, M. Y., Li, S. N., Xie, L., Chen, Z. F., Wang, G., Lin, J. H., Qiu, J. M., Yu, L., et al. (2023). Stabilizing a Li–Mn–O cathode by blocking lattice O migration through a nanoscale phase complex. ACS Energy Lett. 8, 901–908.

[24]

Chen, H., Islam, M. S. (2016). Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 28, 6656–6663.

[25]

Seo, D. H., Lee, J., Urban, A., Malik, R., Kang, S., Ceder, G. (2016). The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697.

[26]

Jo, M. R., Kim, Y., Yang, J., Jeong, M., Song, K., Kim, Y. I., Lim, J. M., Cho, M., Shim, J. H., Kim, Y. M., et al. (2019). Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds. Nat. Commun. 10, 3385.

[27]

Li, C. F., Zhao, K. N., Liao, X. B., Hu, Z. Y., Zhang, L., Zhao, Y., Mu, S., Li, Y. X., Li, Y., Van Tendeloo, G., et al. (2021). Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes. Energy Storage Mater. 36, 115–122.

[28]

Zhang, C. X., Jiang, W. J., He, W. T., Wei, W. F. (2021). Heteroepitaxial interface of layered cathode materials for lithium ion batteries. Energy Storage Mater. 37, 161–189.

[29]

Li, G. H., Ren, Z. M., Li, A. L., Yu, R. Z., Quan, W., Wang, C. H., Lin, T., Yi, D., Liu, Y., Zhang, Q. H., et al. (2022). Highly stable surface and structural origin for lithium-rich layered oxide cathode materials. Nano Energy 98, 107169.

[30]

Xie, Y., Jin, Y. C., Xiang, L. (2022). Li-rich layered oxides: structure, capacity and voltage fading mechanisms and solving strategies. Particuology 61, 1–10.

[31]

Cao, X., Qiao, Y., Jia, M., He, P., Zhou, H. S. (2022). Ion-exchange: a promising strategy to design Li-rich and Li-excess layered cathode materials for Li-ion batteries. Adv. Energy Mater. 12, 2003972.

[32]

Kim, S. Y., Park, C. S., Hosseini, S., Lampert, J., Kim, Y. J., Nazar, L. F. (2021). Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer. Adv. Energy Mater. 11, 2100552.

[33]

Wei, C. C., Liu, C., Xiao, Y. J., Wu, Z. K., Luo, Q. Y., Jiang, Z. L., Wang, Z. Y., Zhang, L., Cheng, S. J., Yu, C. (2024). SnF2-induced multifunctional interface-stabilized Li5.5PS4.5Cl1.5-based all-solid-state lithium metal batteries. Adv. Funct. Mater. 34, 2314306.

[34]

Xie, H. X., Tan, L. P., Yao, Z., Cui, J. X., Ding, X. K., Zhang, Z. H., Luo, D., Lin, Z. (2023). Phosphorylation of Li-rich Mn-based layered oxides for anion redox and structural stability. ACS Appl. Mater. Interfaces 15, 2881–2890.

[35]

Li, J., Li, W. T., Zhang, C., Han, C., Chen, X. P., Zhao, H., Xu, H. Y., Jia, G. X., Li, Z. L., Li, J. X., et al. (2023). Tuning Li2MnO3-like domain size and surface structure enables highly stabilized Li-rich layered oxide cathodes. ACS Nano 17, 16827–16839.

[36]

Tian, Y., Zhao, Y. L., Meng, F. Q., Zhang, K. C., Qi, Y. Y., Zeng, Y. J., Cai, C. C., Xiong, Y. L., Jian, Z. L., Sun, Y., et al. (2023). Boosting Li-ion storage in Li2MnO3 by unequal-valent Ti4+-substitution and interlayer Li vacancies building. Chin. Chem. Lett. 34, 107494.

[37]

Luo, D., Ding, X. K., Hao, X. D., Xie, H. X., Cui, J. X., Liu, P. Z., Yang, X. H., Zhang, Z. H., Guo, J. J., Sun, S. H., et al. (2021). Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes. ACS Energy Lett. 6, 2755–2764.

[38]

Zhao, Y. H., Lai, X. Q., Wang, P. F., Liu, Z. L., Yi, T. F. (2023). Construction of metal–organic framework-derived Al-doped Na3V2(PO4)3 cathode materials for high-performance rechargeable Na-ion batteries. Energy Mater. Devices 1, 9370021.

[39]

Cheng, W. H., Liu, Q. C., Zhou, H., Liu, Z. J., Zhang, J., Ding, J., Wang, X. C., Wang, J. L., Wang, Y. G., Wang, B., et al. (2023). Fluorine-induced reversible cation/anion redox reactions to enhance stability in Li-rich layered oxides. Chem. Eng. J. 477, 147043.

[40]

Wei, C., Xiao, Y., Wu, Z. et al. (2024). Construction of LiCl/LiF/LiZn hybrid SEI interface achieving high-performance sulfide-based all-solid-state lithium metal batteries. Sci. China Chem. 67, 1990–2001.

[41]

Luo, D., Fan, J. M., Yao, Z., Xie, H. X., Cui, J. X., Yang, Y. J., Ding, X. K., Ji, J. P., Wu, S. X., Ling, M., et al. (2021). An almost full reversible lithium-rich cathode: Revealing the mechanism of high initial Coulombic efficiency. J. Energy Chem. 62, 120–126.

[42]

Xie, H. X., Cui, J. X., Yao, Z., Ding, X. K., Zhang, Z. H., Luo, D., Lin, Z. (2022). Revealing the role of spinel phase on Li-rich layered oxides: a review. Chem. Eng. J. 427, 131978.

[43]

Gao, Y. R., Wang, X. F., Ma, J., Wang, Z. X., Chen, L. Q. (2015). Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem. Mater. 27, 3456–3461.

[44]

Yang, Y. R., Zhu, Q. J., Yang, J. Y., Liu, H., Ren, Y., Sui, X., Wang, P. P., Sun, G., Wang, Z. B. (2023). Surface miscible structure modulation of Li-rich cathodes by dual gas surface treatment for super high-temperature electrochemical performance. Adv. Funct. Mater. 33, 2304979.

[45]

Su, Y. F., Wang, M., Zhang, M. X., Chen, L., Li, N., Chen, L., Chen, Y. B., Liu, J. Y., Li, Y. L. (2022). The positive role of the single crystal morphology in improving the electrochemical performance of Li-rich cathode materials. J. Alloys Compd. 905, 164204.

[46]

Wang, Z. J., Zhang, B. (2023). Weakly solvating electrolytes for next-generation lithium batteries: design principles and recent advances. Energy Mater. Devices 1, 9370003.

Energy Materials and Devices
Article number: 9370039
Cite this article:
Tan L, Huang W, Xie X, et al. V-doped Co-free Li-rich layered oxide with enhanced oxygen redox reversibility for excellent voltage stability and high initial Coulombic efficiency. Energy Materials and Devices, 2024, 2(3): 9370039. https://doi.org/10.26599/EMD.2024.9370039

2191

Views

480

Downloads

0

Crossref

Altmetrics

Received: 17 April 2024
Revised: 22 May 2024
Accepted: 26 May 2024
Published: 30 September 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return