AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (20.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Porous zinc metal anodes for aqueous zinc-ion batteries: Advances and prospectives

Yichen Ding1,Bingyue Ling1,Xin Zhao1Xu Yang2Yao Wang1( )Dong Zhou1( )Guoxiu Wang2( )
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Center for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia

Yichen Ding and Bingyue Ling contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The intensifying challenges posed by climate change and the depletion of fossil fuels have spurred concerted global efforts to develop alternative energy storage solutions. Aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates for large-scale electrochemical energy storage systems because of their intrinsic safety, cost-effectiveness, and environmental sustainability. However, Zn dendrite growth consistently poses a remarkable challenge to the performance improvement and commercial viability of AZIBs. The use of three-dimensional porous Zn anodes instead of planar Zn plates has been demonstrated as an effective strategy to regulate the deposition/stripping behavior of Zn2+ ions, thereby inhibiting the dendrite growth. Here, the merits of porous Zn anodes were summarized, and a comprehensive overview of the recent advancements in the engineering of porous Zn metal anodes was provided, with a particular emphasis on the structural orderliness and critical role of porous structure modulation in enhancing battery performance. Furthermore, strategic insights into the design of porous Zn anodes were presented to facilitate the practical implementation of AZIBs for grid-scale energy storage applications.

References

[1]

Yan, J. P., Ang, E. H., Yang, Y., Zhang, Y. F., Ye, M. H., Du, W. C., Li, C. C. (2021). High-voltage zinc-ion batteries: Design strategies and challenges. Adv. Funct. Mater. 31, 2010213.

[2]

Dunn, B., Kamath, H., Tarascon, J. M. (2011). Electrical energy storage for the grid: a battery of choices. Science 334, 928–935.

[3]

Zhu, Z. X., Jiang, T. L., Ali, M., Meng, Y. H., Jin, Y., Cui, Y., Chen, W. (2022). Rechargeable batteries for grid scale energy storage. Chem. Rev. 122, 16610–16751.

[4]

Ni, Q., Kim, B., Wu, C., Kang, K. (2022). Non-electrode components for rechargeable aqueous zinc batteries: Electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 34, 2108206.

[5]

Li, Y., Wu, F., Li, Y., Liu, M. Q., Feng, X., Bai, Y., Wu, C. (2022). Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51, 4484–4536.

[6]

Li, H. F., Ma, L. T., Han, C. P., Wang, Z. F., Liu, Z. X., Tang, Z. J., Zhi, C. Y. (2019). Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 62, 550–587.

[7]

Xu, C. J., Li, B. H., Du, H. D., Kang, F. Y. (2012). Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935.

[8]

Gourley, S. W. D., Brown, R., Adams, B. D., Higgins, D. (2023). Zinc-ion batteries for stationary energy storage. Joule 7, 1415–1436.

[9]

Yu, X. H., Li, Z. G., Wu, X. H., Zhang, H. T., Zhao, Q. G., Liang, H. F., Wang, H., Chao, D. L., Wang, F., Qiao, Y., et al. (2023). Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7, 1145–1175.

[10]

Chen, J. Y., Wang, Y. Z., Tian, Z. N., Zhao, J., Ma, Y. W., Alshareef, H. N. (2024). Recent developments in three-dimensional Zn metal anodes for battery applications. InfoMat 6, e12485.

[11]

Guo, N., Huo, W. J., Dong, X. Y., Sun, Z. F., Lu, Y. T., Wu, X. W., Dai, L., Wang, L., Lin, H. C., Liu, H. D., et al. (2022). A review on 3D zinc anodes for zinc ion batteries. Small Methods 6, 2200597.

[12]

Tian, H., Yang, J. L., Deng, Y. R., Tang, W. H., Liu, R. P., Xu, C. Y., Han, P., Fan, H. J. (2023). Steel anti-corrosion strategy enables long-cycle Zn anode. Adv. Energy Mater. 13, 2202603.

[13]

Wang, Y., Wang, T. R., Bu, S. Y., Zhu, J. X., Wang, Y. B., Zhang, R., Hong, H., Zhang, W. J., Fan, J., Zhi, C. Y. (2023). Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat. Commun. 14, 1828.

[14]

Feng, D. D., Jiao, Y. C., Wu, P. Y. (2023). Guiding Zn uniform deposition with polymer additives for long-lasting and highly utilized Zn metal anodes. Angew. Chem., Int. Ed. 62, e202314456.

[15]

Xie, X. S., Liang, S. Q., Gao, J. W., Guo, S., Guo, J. B., Wang, C., Xu, G. Y., Wu, X. W., Chen, G., Zhou, J. (2020). Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510.

[16]

Sun, G. Q., Zhou, M. Q., Dong, X. Y., Zang, S. Q., Qu, L. T. (2022). An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Res. 15, 5081–5088.

[17]

Li, X. L., Li, Q., Hou, Y., Yang, Q., Chen, Z., Huang, Z. D., Liang, G. J., Zhao, Y. W., Ma, L. T., Li, M., et al. (2021). Toward a practical Zn powder anode: Ti3C2T x MXene as a lattice-match electrons/ions redistributor. ACS Nano 15, 14631–14642.

[18]

Na, Z., Qi, H. K., Li, S. H., Wu, Y. B., Wang, Q. S., Huang, G. (2023). Stable zinc metal anode by nanosecond pulsed laser enabled gradient design. ACS Energy Lett. 8, 3297–3306.

[19]

Wang, T. Q., Tang, Y., Yu, M. X., Lu, B. G., Zhang, X. T., Zhou, J. (2023). Spirally grown zinc-cobalt alloy layer enables highly reversible zinc metal anodes. Adv. Funct. Mater. 33, 2306101.

[20]

Cao, Q. H., Gao, Y., Pu, J., Zhao, X., Wang, Y. X., Chen, J. P., Guan, C. (2023). Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14, 641.

[21]

Xue, P., Guo, C., Li, L., Li, H. P., Luo, D., Tan, L. C., Chen, Z. W. (2022). A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv. Mater. 34, 2110047.

[22]

Zeng, L., He, J., Yang, C. Y., Luo, D., Yu, H. B., He, H. N., Zhang, C. H. (2023). Direct 3D printing of stress-released Zn powder anodes toward flexible dendrite-free Zn batteries. Energy Storage Mater. 54, 469–477.

[23]

Parker, J. F., Chervin, C. N., Pala, I. R., Machler, M., Burz, M. F., Long, J. W., Rolison, D. R. (2017). Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 356, 415–418.

[24]

Li, P. P., Jin, Z. Y., Xiao, D. (2018). Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Storage Mater. 12, 232–240.

[25]

Zeng, Y. X., Zhang, X. Y., Qin, R. F., Liu, X. Q., Fang, P. P., Zheng, D. Z., Tong, Y. X., Lu, X. H. (2019). Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675.

[26]

Wang, S. B., Ran, Q., Yao, R. Q., Shi, H., Wen, Z., Zhao, M., Lang, X. Y., Jiang, Q. (2020). Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634.

[27]

Kim, J. Y., Liu, G. C., Shim, G. Y., Kim, H., Lee, J. K. (2020). Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 30, 2004210.

[28]

Liu, H. Z., Li, J. H., Zhang, X. N., Liu, X. X., Yan, Y., Chen, F. J., Zhang, G. H., Duan, H. G. (2021). Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 31, 2106550.

[29]

Yang, Y., Liu, C. Y., Lv, Z. H., Yang, H., Zhang, Y. F., Ye, M. H., Chen, L. B., Zhao, J. B., Li, C. C. (2021). Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33, 2007388.

[30]

Zhang, M., Yu, P. F., Xiong, K. R., Wang, Y. Y., Liu, Y. L., Liang, Y. R. (2022). Construction of mixed ionic-electronic conducting scaffolds in Zn powder: A scalable route to dendrite-free and flexible Zn anodes. Adv. Mater. 34, 2200860.

[31]

Gao, Y., Cao, Q. H., Pu, J., Zhao, X., Fu, G. W., Chen, J. P., Wang, Y. X., Guan, C. (2023). Stable Zn anodes with triple gradients. Adv. Mater. 35, 2207573.

[32]

Mu, Y. B., Li, Z., Wu, B. K., Huang, H. D., Wu, F. H., Chu, Y. Q., Zou, L. F., Yang, M., He, J. F., Ye, L., et al. (2023). 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14, 4205.

[33]

Chazalviel, J. N. (1990). Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367.

[34]

Hou, Z., Gao, Y., Zhou, R., Zhang, B. (2022). Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv. Funct. Mater. 32, 2107584.

[35]

Zheng, X. Y., Huang, L. Q., Ye, X. L., Zhang, J. X., Min, F. Y., Luo, W., Huang, Y. H. (2021). Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 7, 2312–2346.

[36]

Li, B., Liu, S. D., Geng, Y. F., Mao, C. W., Dai, L., Wang, L., Jun, S. C., Lu, B. G., He, Z. X., Zhou, J. (2024). Achieving stable zinc metal anode via polyaniline interface regulation of Zn ion flux and desolvation. Adv. Funct. Mater. 34, 2214033.

[37]

Du, Z. J., Wood, D. L., Daniel, C., Kalnaus, S., Li, J. L. (2017). Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J. Appl. Electrochem. 47, 405–415.

[38]

Wu, J. Y., Ju, Z. Y., Zhang, X., Marschilok, A. C., Takeuchi, K. J., Wang, H. L., Takeuchi, E. S., Yu, G. H. (2022). Gradient design for high-energy and high-power batteries. Adv. Mater. 34, 2202780.

[39]

Cao, R., Zhu, L. Q., Liu, H. C., Yang, W., Li, W. P. (2015). The effect of silica sols on electrodeposited zinc coatings for sintered ndfeb. RSC Adv. 5, 104375–104385.

[40]

Wang, X., Meng, J. P., Lin, X. G., Yang, Y. D., Zhou, S., Wang, Y. P., Pan, A. Q. (2021). Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv. Funct. Mater. 31, 2106114.

[41]

He, H. N., Zeng, L., Luo, D., He, J., Li, X. L., Guo, Z. P., Zhang, C. H. (2023). 3D printing of electron/ion-flux dual-gradient anodes for dendrite-free zinc batteries. Adv. Mater. 35, 2211498.

[42]

Wang, X., Zeng, W., Hong, L., Xu, W. W., Yang, H. K., Wang, F., Duan, H. G., Tang, M., Jiang, H. Q. (2018). Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235.

[43]

Wang, C. C., Zhu, G. Y., Liu, P., Chen, Q. (2020). Monolithic nanoporous Zn anode for rechargeable alkaline batteries. ACS Nano 14, 2404–2411.

[44]

Chamoun, M., Hertzberg, B. J., Gupta, T., Davies, D., Bhadra, S., Van Tassell, B., Erdonmez, C., Steingart, D. A. (2015). Hyper-dendritic nanoporous zinc foam anodes. NPG Asia Mater. 7, e178.

[45]

Zhang, Y. R., Han, X. P., Liu, R. Z., Yang, Z. X., Zhang, S. J., Zhang, Y. M., Wang, H. L., Cao, Y., Chen, A., Sun, J. (2022). Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn(100) crystal plane to construct surficial dendrite-free zinc metal anode. Small 18, 2105978.

[46]

Li, F., Ma, D. T., Ouyang, K. F., Yang, M., Qiu, J. M., Feng, J., Wang, Y. Y., Mi, H. W., Sun, S. C., Sun, L. N., et al. (2023). A theory-driven complementary interface effect for fast-kinetics and ultrastable Zn metal anodes in aqueous/solid electrolytes. Adv. Energy Mater. 13, 2204365.

[47]

Xu, D. M., Chen, B. Q., Ren, X. T., Han, C., Chang, Z., Pan, A. Q., Zhou, H. S. (2024). Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries. Energy Environ. Sci. 2, 642–654.

[48]

Wang, J. D., Cai, Z., Xiao, R., Ou, Y. T., Zhan, R. M., Yuan, Z., Sun, Y. M. (2020). A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 12, 23028–23034.

[49]

Fu, H., Wen, Q., Li, P. Y., Wang, Z. Y., He, Z. J., Yan, C., Mao, J., Dai, K. H., Zhang, X. H., Zheng, J. C. (2022). In-situ chemical conversion film for stabilizing zinc metal anodes. J. Energy Chem. 73, 387–393.

[50]

Deng, C. B., Li, Y., Liu, S. J., Yang, J. L., Huang, B. L., Liu, J. P., Huang, J. Q. (2023). Nature-inspired interfacial engineering for highly stable Zn metal anodes. Energy Storage Mater. 58, 279–286.

[51]

Lv, L. L., Wu, X. C., Han, X. S., Li, C. X. (2020). Amino acid modified graphene oxide for assembly of nanoparticles for wastewater treatment. Appl. Surf. Sci. 534, 147620.

[52]

Wen, Q., Fu, H., Wang, Z. Y., Huang, Y. D., He, Z. J., Yan, C., Mao, J., Dai, K. H., Zhang, X. H., Zheng, J. C. (2022). A hydrophobic layer of amino acid enabling dendrite-free Zn anodes for aqueous zinc-ion batteries. J. Mater. Chem. A 10, 17501–17510.

[53]

Wang, W. X., Huang, G., Wang, Y. Z., Cao, Z., Cavallo, L., Hedhili, M. N., Alshareef, H. N. (2022). Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv. Energy Mater. 12, 2102797.

[54]

Zhao, R. Z., Dong, X. S., Liang, P., Li, H. P., Zhang, T. S., Zhou, W. H., Wang, B. Y., Yang, Z. D., Wang, X., Wang, L. P., et al. (2023). Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 35, 2209288.

[55]

Jiao, Q. Y., Zhai, X. W., Sun, Z. X., Wang, W. J., Liu, S. H., Ding, H., Chu, W. S., Zhou, M., Wu, C. Z. (2023). Ultrafast superfilling construction of a metal artificial interface for long-term stable zinc anodes. Adv. Mater. 35, 2300850.

[56]

Chen, J. Y., Qiao, X., Han, X. R., Zhang, J. H., Wu, H. B., He, Q., Chen, Z. B., Shi, L., Wang, Y. Z., Xie, Y. N., et al. (2022). Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy 103, 107814.

[57]

Bie, Z., Yang, Q., Cai, X. X., Chen, Z., Jiao, Z. Y., Zhu, J. B., Li, Z. F., Liu, J. Z., Song, W. X., Zhi, C. Y. (2022). One-step construction of a polyporous and zincophilic interface for stable zinc metal anodes. Adv. Energy Mater. 12, 2202683.

[58]

Nayaka, G. P., Zhang, Y. J., Dong, P., Wang, D., Zhou, Z. R., Duan, J. G., Li, X., Lin, Y., Meng, Q., Pai, K. V., et al. (2019). An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching. J. Environ. Chem. Eng. 7, 102854.

[59]

Li, J. J., Liu, Z. X., Han, S. H., Zhou, P., Lu, B. G., Zhou, J. D., Zeng, Z. Y., Chen, Z. Z., Zhou, J. (2023). Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15, 237.

[60]

Zou, Y. H., Su, Y. W., Qiao, C. P., Li, W. P., Xue, Z. K., Yang, X. Z., Lu, M. Y., Guo, W. Y., Sun, J. Y. (2023). A generic “engraving in aprotic medium” strategy toward stabilized Zn anodes. Adv. Energy Mater. 13, 2300932.

[61]

Zhang, X. T., Li, J. X., Liu, Y. F., Lu, B. G., Liang, S. Q., Zhou, J. (2024). Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15, 2735.

[62]
Hong, L., Wang, L. Y., Wang, Y. L., Wu, X. M., Huang, W., Zhou, Y. F., Wang, K. X., Chen, J. S. (2022). Toward hydrogen-free and dendrite-free aqueous zinc batteries: Formation of zincophilic protective layer on Zn anodes. Adv. Sci. (Weinh.) 9, 2104866.
[63]

Ouyang, K. F., Ma, D. T., Zhao, N., Wang, Y. Y., Yang, M., Mi, H. W., Sun, L. N., He, C. X., Zhang, P. X. (2022). A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32, 2109749.

[64]

He, P., Huang, J. X. (2022). Chemical passivation stabilizes Zn anode. Adv. Mater. 34, 2109872.

[65]

Zhang, L., Zhang, B., Zhang, T., Li, T., Shi, T. F., Li, W., Shen, T., Huang, X. X., Xu, J. J., Zhang, X. G., et al. (2021). Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 31, 2100186.

[66]

Huang, Y. F., Chang, Z. W., Liu, W. B., Huang, W. T., Dong, L. B., Kang, F. Y., Xu, C. J. (2022). Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries. Chem. Eng. J. 431, 133902.

[67]

Zhang, Q., Luan, J. Y., Fu, L., Wu, S. G., Tang, Y. B., Ji, X., Wang, H. Y. (2019). The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58, 15841–15847.

[68]

Shi, X. D., Xu, G. F., Liang, S. Q., Li, C. P., Guo, S., Xie, X. S., Ma, X. M., Zhou, J. (2019). Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode. ACS Sustainable Chem. Eng. 7, 17737–17746.

[69]

Kang, Z., Wu, C. L., Dong, L. B., Liu, W. B., Mou, J., Zhang, J. W., Chang, Z. W., Jiang, B. Z., Wang, G. X., Kang, F. Y., et al. (2019). 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustainable Chem. Eng. 7, 3364–3371.

[70]

An, Y. L., Tian, Y., Xiong, S. L., Feng, J. K., Qian, Y. T. (2021). Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828–11842.

[71]

Yi, Z. H., Liu, J. X., Tan, S. D., Sang, Z. Y., Mao, J., Yin, L. C., Liu, X. G., Wang, L. Q., Hou, F., Dou, S. X., et al. (2022). An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 34, 2203835.

[72]

Fan, X. Y., Yang, H., Feng, B., Zhu, Y. Q., Wu, Y., Sun, R. B., Gou, L., Xie, J., Li, D. L., Ding, Y. L. (2022). Rationally designed In@Zn@In trilayer structure on 3D porous Cu towards high-performance Zn-ion batteries. Chem. Eng. J. 445, 136799.

[73]

Yu, H. M., Li, Q. Y., Liu, W., Wang, H., Ni, X. Y., Zhao, Q. W., Wei, W. F., Ji, X. B., Chen, Y. J., Chen, L. B. (2022). Fast ion diffusion alloy layer facilitating 3D mesh substrate for dendrite-free zinc-ion hybrid capacitors. J. Energy Chem. 73, 565–574.

[74]

Douka, A. I., Xu, Y. Y., Yang, H., Zaman, S., Yan, Y., Liu, H. F., Salam, M. A., Xia, B. Y. (2020). A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc–air batteries. Adv. Mater. 32, 2002170.

[75]

Pan, Y. L., Hu, M., Ma, M. D., Li, Z. H., Gao, Y. F., Xiong, M., Gao, G. Y., Zhao, Z. S., Tian, Y. J., Xu, B., et al. (2017). Multithreaded conductive carbon: 1d conduction in 3D carbon. Carbon 115, 584–588.

[76]

Borchardt, L., Zhu, Q. L., Casco, M. E., Berger, R., Zhuang, X. D., Kaskel, S., Feng, X. L., Xu, Q. (2017). Toward a molecular design of porous carbon materials. Mater. Today 20, 592–610.

[77]

Zheng, J. X., Zhao, Q., Tang, T., Yin, J. F., Quilty, C. D., Renderos, G. D., Liu, X. T., Deng, Y., Wang, L., Bock, D. C., et al. (2019). Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648.

[78]

Xie, F. X., Li, H., Wang, X. S., Zhi, X., Chao, D. L., Davey, K., Qiao, S. Z. (2021). Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11, 2003419.

[79]

Wang, J. H., Chen, L. F., Dong, W. X., Zhang, K. L., Qu, Y. F., Qian, J. W., Yu, S. H. (2023). Three-dimensional zinc-seeded carbon nanofiber architectures as lightweight and flexible hosts for a highly reversible zinc metal anode. ACS Nano 17, 19087–19097.

[80]

Zhou, J. H., Xie, M., Wu, F., Mei, Y., Hao, Y. T., Li, L., Chen, R. J. (2022). Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34, 2106897.

[81]

Cao, Q. H., Gao, H., Gao, Y., Yang, J., Li, C., Pu, J., Du, J. J., Yang, J. J., Cai, D. M., Pan, Z. H., et al. (2021). Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31, 2103922.

[82]

Wang, Q., Astruc, D. (2020). State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 120, 1438–1511.

[83]

Wang, Z., Xu, J., Yang, J. H., Xue, Y. H., Dai, L. M. (2022). Ultraviolet/ozone treatment for boosting oer activity of MOF nanoneedle arrays. Chem. Eng. J. 427, 131498.

[84]

Yuksel, R., Buyukcakir, O., Seong, W. K., Ruoff, R. S. (2020). Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10, 1904215.

[85]

Yu, H., Yao, H. X., Zheng, Y. Q., Liu, D., Chen, J. S., Guo, Y., Li, N. W., Yu, L. (2024). Formation of hierarchical Zn/N-doped carbon hollow nanofibers towards dendrite-free Zn metal anodes. Adv. Funct. Mater. 34, 2311038.

[86]

Gong, Y., Xue, Y. H. (2023). Carbon nanomaterials for stabilizing zinc anodes in zinc-ion batteries. New Carbon Mater. 38, 438–454.

[87]

Tao, Y., Zuo, S. W., Xiao, S. H., Sun, P. X., Li, N. W., Chen, J. S., Zhang, H. B., Yu, L. (2022). Atomically dispersed Cu in zeolitic imidazolate framework nanoflake array for dendrite-free Zn metal anode. Small 18, 2203231.

[88]

Li, H. P., Guo, C., Zhang, T. S., Xue, P., Zhao, R. Z., Zhou, W. H., Li, W., Elzatahry, A., Zhao, D. Y., Chao, D. L. (2022). Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 22, 4223–4231.

[89]

Zeng, Y. H., Sun, P. X., Pei, Z. H., Jin, Q., Zhang, X. T., Yu, L., Lou, X. W. D. (2022). Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34, 2200342.

[90]

Yu, H., Zeng, Y. X., Li, N. W., Luan, D. Y., Yu, L., Lou, X. W. D. (2022). Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Sci. Adv. 8, eabm5766.

[91]

Zhou, W. J., Wu, T., Chen, M. F., Tian, Q. H., Han, X., Xu, X. W., Chen, J. Z. (2022). Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries. Energy Storage Mater. 51, 286–293.

[92]

Wang, R., Xin, S., Chao, D. L., Liu, Z. X., Wan, J. D., Xiong, P., Luo, Q. Q., Hua, K., Hao, J. N., Zhang, C. F. (2022). Fast and regulated zinc deposition in a semiconductor substrate toward high-performance aqueous rechargeable batteries. Adv. Funct. Mater. 32, 2207751.

[93]

Li, Q., Wang, Y. B., Mo, F. N., Wang, D. H., Liang, G. J., Zhao, Y. W., Yang, Q., Huang, Z. D., Zhi, C. Y. (2021). Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 11, 2003931.

[94]

Li, S. P., Wang, H., Cuthbert, J., Liu, T., Whitacre, J. F., Matyjaszewski, K. (2019). A semiliquid lithium metal anode. Joule 3, 1637–1646.

[95]

Liu, Q., Yu, Z. L., Zhou, R., Zhang, B. (2023). A semi-liquid electrode toward stable Zn powder anode. Adv. Funct. Mater. 33, 2210290.

[96]

Hu, Q., Hou, J. M., Liu, Y. B., Li, L., Ran, Q. W., Mao, J. Q., Liu, X. Q., Zhao, J. X., Pang, H. (2023). Modulating zinc metal reversibility by confined antifluctuator film for durable and dendrite-free zinc ion batteries. Adv. Mater. 2303336.

[97]

Wang, J. X., Zhang, H., Yang, L. Z., Zhang, S. Y., Han, X. P., Hu, W. B. (2024). In situ implanting 3D carbon network reinforced zinc composite by powder metallurgy for highly reversible Zn-based battery anodes. Angew. Chem. Int. Ed. 63, e202318149.

[98]

Yang, Z. F., Zhang, Q., Li, W. B., Xie, C. L., Wu, T. Q., Hu, C., Tang, Y. G., Wang, H. Y. (2023). A semi-solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202215306.

[99]

Cao, C. H., Zhou, K. Q., Du, W. C., Li, C. C., Ye, M. H., Zhang, Y. F., Tang, Y. C., Liu, X. Q. (2023). Designing soft solid-like viscoelastic zinc powder anode toward high-performance aqueous zinc-ion batteries. Adv. Energy Mater. 13, 2301835.

[100]

Du, Y. X., Chi, X. W., Huang, J. Q., Qiu, Q. L., Liu, Y. (2020). Long lifespan and high-rate Zn anode boosted by 3D porous structure and conducting network. J. Power Sources 479, 228808.

[101]

Du, W. C., Huang, S., Zhang, Y. F., Ye, M. H., Li, C. C. (2022). Enable commercial zinc powders for dendrite-free zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Mater. 45, 465–473.

[102]

Huyan, X. D., Yi, Z. H., Sang, Z. Y., Tan, S. D., Liu, J. X., Chen, R., Si, W. P., Liang, J., Hou, F. (2023). Polyethylene glycol coating on zinc powder surface: Applications in dendrite-free zinc anodes with enhanced utilization rate. Appl. Surf. Sci. 614, 156209.

[103]

Chen, H. L., Zhang, W. Y., Yi, S., Su, Z., Zhao, Z. Q., Zhang, Y. Y., Niu, B., Long, D. H. (2024). Zinc iso-plating/stripping: Toward a practical Zn powder anode with ultra-long life over 5600 h. Energy Environ. Sci. 17, 3146–3156.

[104]

Lin, Y. H., Hu, Y. Z., Zhang, S., Xu, Z. Q., Feng, T. T., Zhou, H. P., Wu, M. Q. (2022). Binder-free freestanding 3D Zn-graphene anode induced from commercial zinc powders and graphene oxide for zinc ion battery with high utilization rate. ACS Appl. Energy Mater. 5, 15222–15232.

[105]

Xu, X. Y., Li, S. M., Cao, Z. J., Yang, S. B., Li, B. (2024). Boosting ion diffusion and charge transfer by zincophilic accordion arrays to achieve ultrafast aqueous zinc metal batteries. Adv. Energy Mater. 14, 2303971.

[106]

Rehnlund, D., Wang, Z. H., Nyholm, L. (2022). Lithium-diffusion induced capacity losses in lithium-based batteries. Adv. Mater. 34, 2108827.

[107]

Zhang, Y. Y., Malyi, O. I., Tang, Y. X., Wei, J. Q., Zhu, Z. Q., Xia, H. R., Li, W. L., Guo, J., Zhou, X. R., Chen, Z., et al. (2017). Reducing the charge carrier transport barrier in functionally layer-graded electrodes. Angew. Chem. Int. Ed. 56, 14847–14852.

[108]

Ju, Z. Y., Zhang, X., Wu, J. Y., Yu, G. H. (2021). Vertically aligned two-dimensional materials-based thick electrodes for scalable energy storage systems. Nano Res. 14, 3562–3575.

[109]

Ju, Z. Y., Zhu, Y., Zhang, X., Lutz, D. M., Fang, Z. W., Takeuchi, K. J., Takeuchi, E. S., Marschilok, A. C., Yu, G. H. (2020). Understanding thickness-dependent transport kinetics in nanosheet-based battery electrodes. Chem. Mater. 32, 1684–1692.

[110]

Cao, Q. H., Pan, Z. H., Gao, Y., Pu, J., Fu, G. W., Cheng, G. H., Guan, C. (2022). Stable imprinted zincophilic Zn anodes with high capacity. Adv. Funct. Mater. 32, 2205771.

[111]

Huang, Z. C., Li, H. Y., Yang, Z., Wang, H. Z., Ding, J. N., Xu, L. Y., Tian, Y. L., Mitlin, D., Ding, J., Hu, W. B. (2022). Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity. Energy Storage Mater. 51, 273–285.

[112]

Liang, G. J., Zhu, J. X., Yan, B. X., Li, Q., Chen, A., Chen, Z., Wang, X. Q., Xiong, B., Fan, J., Xu, J., et al. (2022). Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ. Sci. 15, 1086–1096.

[113]

Gao, X. J., Yang, X. F., Adair, K., Li, X. N., Liang, J. W., Sun, Q., Zhao, Y., Li, R. N., Sham, T. K., Sun, X. L. (2020). 3D vertically aligned li metal anodes with ultrahigh cycling currents and capacities of 10 mA cm-2 20 mAh cm−2 realized by selective nucleation within microchannel walls. Adv. Energy Mater. 10, 1903753.

[114]

Li, S. Y., Fu, J., Miao, G. X., Wang, S. P., Zhao, W. Y., Wu, Z. C., Zhang, Y. J., Yang, X. W. (2021). Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33, 2008424.

[115]

Zhang, G. H., Zhang, X. N., Liu, H. Z., Li, J. H., Chen, Y. Q., Duan, H. (2021). 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927.

[116]

Sun, P. X., Cao, Z. J., Zeng, Y. X., Xie, W. W., Li, N. W., Luan, D. Y., Yang, S. B., Yu, L., Lou, X. W. D. (2022). Formation of super-assembled TiO x /Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes. Angew. Chem. Int. Ed. 61, e202115649.

[117]

Zeng, W., Wei, P. D., Chen, J. E., Wang, G. Z., Yan, Y., Yu, H. H., Yang, C. Y., Zhang, G. H., Jiang, H. Q. (2023). Ultra-stable zinc metal anodes enabled by uniform Zn deposition on a preferential crystal plane. Adv. Energy Mater. 13, 2302205.

[118]

Idrees, M., Batool, S., Din, M. A. U., Javed, M. S., Ahmed, S., Chen, Z. W. (2023). Material-structure-property integrated additive manufacturing of batteries. Nano Energy 109, 108247.

[119]

Chang, P., Mei, H., Zhou, S. X., Dassios, K. G., Cheng, L. F. (2019). 3D printed electrochemical energy storage devices. J. Mater. Chem. A 7, 4230–4258.

[120]

Wu, B. K., Guo, B. B., Chen, Y. Z., Mu, Y. B., Qu, H. Q., Lin, M., Bai, J. M., Zhao, T. S., Zeng, L. (2023). High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays. Energy Storage Mater. 54, 75–84.

[121]

Zeng, L., He, H. N., Chen, H. Y., Luo, D., He, J., Zhang, C. H. (2022). 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv. Energy Mater. 12, 2103708.

[122]

Zhai, P. B., Wang, T. S., Jiang, H. N., Wan, J. Y., Wei, Y., Wang, L., Liu, W., Chen, Q., Yang, W. W., Cui, Y., et al. (2021). 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, 2006247.

[123]

Cao, Z. J., Li, B., Yang, S. B. (2019). Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 31, 1901310.

[124]

Qi, Y. B., Jang, T. J., Ramadesigan, V., Schwartz, D. T., Subramanian, V. R. (2017). Is there a benefit in employing graded electrodes for lithium-ion batteries. J. Electrochem. Soc. 164, A3196–A3207.

[125]

Ramadesigan, V., Methekar, R. N., Latinwo, F., Braatz, R. D., Subramanian, V. R. (2010). Optimal porosity distribution for minimized ohmic drop across a porous electrode. J. Electrochem. Soc. 157, A1328–A1334.

[126]

Zhao, X., Gao, Y., Cao, Q. H., Bu, F., Pu, J., Wang, Y. X., Guan, C. (2023). A high-capacity gradient Zn powder anode for flexible Zn-ion batteries. Adv. Energy Mater. 13, 2301741.

[127]

Shen, Z. X., Luo, L., Li, C. W., Pu, J., Xie, J. P., Wang, L. T., Huai, Z., Dai, Z. Y., Yao, Y. G., Hong, G. (2021). Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv. Energy Mater. 11, 2100214.

[128]

Li, Y. M., Wang, Z. W., Li, W. H., Zhang, X. Y., Yin, C., Li, K., Guo, W., Zhang, J. P., Wu, X. L. (2023). Trinary nanogradients at electrode/electrolyte interface for lean zinc metal batteries. Energy Storage Mater. 61, 102873.

[129]

Lu, H. Y., Hu, J. S., Zhang, Y., Zhang, K. Q., Yan, X. Y., Li, H. Q., Li, J. Z., Li, Y. J., Zhao, J. X., Xu, B. G. (2023). 3D cold-trap environment printing for long-cycle aqueous Zn-ion batteries. Adv. Mater. 35, 2209886.

[130]

Lu, H. Y., Hu, J. S., Zhang, K. Q., Zhao, J. X., Deng, S. Z., Li, Y. J., Xu, B. G., Pang, H. (2024). Microfluidic-assisted 3D printing zinc powder anode with 2D conductive mof/MXene heterostructures for high-stable zinc-organic battery. Adv. Mater. 36, 2309753.

[131]

Yang, J. Y., Xu, X., Gao, Y., Wang, Y. X., Cao, Q. H., Pu, J., Bu, F., Meng, T., Guan, C. (2023). Ultra-stable 3D-printed Zn powder-based anode coated with a conformal ion-conductive layer. Adv. Energy Mater. 13, 2301997.

[132]

Tian, H. J., Feng, G. X., Wang, Q., Li, Z., Zhang, W., Lucero, M., Feng, Z. X., Wang, Z. L., Zhang, Y. N., Zhen, C., et al. (2022). Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13, 7922.

[133]

Li, G. P., Wang, X. L., Lv, S. H., Wang, J. X., Yu, W. S., Dong, X. T., Liu, D. T. (2023). In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition. Adv. Funct. Mater. 33, 2208288.

[134]

Zhang, W. Y., Dong, M. Y., Jiang, K. R., Yang, D. L., Tan, X. H., Zhai, S. L., Feng, R. F., Chen, N., King, G., Zhang, H., et al. (2022). Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13, 5348.

[135]

Wang, D. D., Liu, H. X., Lv, D., Wang, C., Yang, J., Qian, Y. T. (2023). Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, 2207908.

Energy Materials and Devices
Article number: 9370040
Cite this article:
Ding Y, Ling B, Zhao X, et al. Porous zinc metal anodes for aqueous zinc-ion batteries: Advances and prospectives. Energy Materials and Devices, 2024, 2(3): 9370040. https://doi.org/10.26599/EMD.2024.9370040

2647

Views

717

Downloads

1

Crossref

Altmetrics

Received: 06 May 2024
Revised: 23 May 2024
Accepted: 26 May 2024
Published: 16 August 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return