AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

“Island-bridge”-structured nanofluidic membranes for high-performance aqueous energy conversion and storage

Yifu GaoZhijia ZhangXin ZhaoYao WangLinxuan SunShunxiang CaoYu Lei( )Baohua LiDong Zhou( )Feiyu Kang( )
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Show Author Information

Graphical Abstract

Abstract

The attainment of carbon neutrality requires the development of aqueous energy conversion and storage devices. However, these devices exhibit limited performance due to the permeability–selectivity trade-off of permselective membranes as core components. Herein, we report the application of a synergistic approach utilizing two-dimensional nanoribbons-entangled nanosheets to rationally balance the permeability and selectivity in permselective membranes. The nanoribbons and nanosheets can be self-assembled into a nanofluidic membrane with a distinctive “island-bridge” configuration, where the nanosheets serve as isolated islands offering adequate ionic selectivity owing to their high surface charge density, meanwhile bridge-like nanoribbons with low surface charge density but high aspect ratio remarkably enhance the membrane’s permeability and water stability, as verified by molecular simulations and experimental investigations. Using this approach, we developed a high-performance graphene oxide (GO) nanosheet/GO nanoribbon (GONR) nanofluidic membrane and achieved an ultrahigh power density of 18.1 W m–2 in a natural seawater|river water osmotic power generator, along with a high Coulombic efficiency and an extended lifespan in zinc metal batteries. The validity of our island-bridge structural design is also demonstrated for other nanosheet/nanoribbon composite membranes, providing a promising path for developing reliable aqueous energy conversion and storage devices.

Electronic Supplementary Material

Download File(s)
EMD20240041_ESM.pdf (2.1 MB)

References

[1]

Obama, B. (2017). The irreversible momentum of clean energy. Science 355, 126–129.

[2]

Siria, A., Bocquet, M. L., Bocquet, L. (2017). New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1, 0091.

[3]

Rastgar, M., Moradi, K., Burroughs, C., Hemmati, A., Hoek, E., Sadrzadeh, M. (2023). Harvesting blue energy based on salinity and temperature gradient: challenges, solutions, and opportunities. Chem. Rev. 123, 10156–10205.

[4]

Zhang, Z., Wen, L. P., Jiang, L. (2021). Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622–639.

[5]

La Mantia, F., Pasta, M., Deshazer, H. D., Logan, B. E., Cui, Y. (2011). Batteries for efficient energy extraction from a water salinity difference. Nano Lett. 11, 1810–1813.

[6]

Dunn, B., Kamath, H., Tarascon, J. M. (2011). Electrical energy storage for the grid: a battery of choices. Science 334, 928–935.

[7]

Liang, Y. L., Yao, Y. (2022). Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122.

[8]

Liu, H. Y., Wang, J. G., You, Z. Y., Wei, C. G., Kang, F. Y., Wei, B. Q. (2021). Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Mater. Today 42, 73–98.

[9]

Lu, W. J., Zhang, C. K., Zhang, H. M., Li, X. F. (2021). Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6, 2765–2785.

[10]

Yang, W. H., Yang, Y., Yang, H. J., Zhou, H. S. (2022). Regulating water activity for rechargeable zinc-ion batteries: progress and perspective. ACS Energy Lett. 7, 2515–2530.

[11]

Chang, Z., Yang, H. J., Qiao, Y., Zhu, X. Y., He, P., Zhou, H. S. (2022). Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries. Adv. Mater. 34, 2201339.

[12]

Qian, Y. J., Liu, D., Yang, G. L., Wang, L. F., Liu, Y. C., Chen, C., Wang, X. G., Lei, W. W. (2022). Boosting osmotic energy conversion of graphene oxide membranes via self-exfoliation behavior in nano-confinement spaces. J. Am. Chem. Soc. 144, 13764–13772.

[13]

Wu, B. K., Guo, B. B., Chen, Y. Z., Mu, Y. B., Qu, H. Q., Lin, M., Bai, J. M., Zhao, T. S., Zeng, L. (2023). High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays. Energy Storage Mater. 54, 75–84.

[14]

Hong, S., El-Demellawi, J. K., Lei, Y. J., Liu, Z. X., Al Marzooqi, F. A., Arafat, H. A., Alshareef, H. N. (2022). Porous Ti3C2T x MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano 16, 792–800.

[15]

Su, Y. W., Liu, B. Z., Zhang, Q. H., Peng, J., Wei, C. H., Li, S., Li, W. P., Xue, Z. K., Yang, X. Z., Sun, J. Y. (2022). Printing-scalable Ti3C2T x MXene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32, 2204306.

[16]

Man, Z. M., Safaei, J., Zhang, Z., Wang, Y. Z., Zhou, D., Li, P., Zhang, X. G., Jiang, L., Wang, G. X. (2021). Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc. 143, 16206–16216.

[17]

Park, J. H., Kwak, M. J., Hwang, C., Kang, K. N., Liu, N., Jang, J. H., Grzybowski, B. A. (2021). Self-assembling films of covalent organic frameworks enable long-term, efficient cycling of zinc-ion batteries. Adv. Mater. 33, 2101726.

[18]

Safaei, J., Gao, Y. F., Hosseinpour, M., Zhang, X. Y., Sun, Y., Tang, X., Zhang, Z. J., Wang, S. J., Guo, X., Wang, Y., et al. (2023). Vacancy engineering for high-efficiency nanofluidic osmotic energy generation. J. Am. Chem. Soc. 145, 2669–2678.

[19]

Zhu, C. C., Liu, P., Niu, B., Liu, Y. N., Xin, W. W., Chen, W. P., Kong, X. Y, Zhang, Z., Jiang, L., Wen, L. P. (2021). Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes. J. Am. Chem. Soc. 143, 1932–1940.

[20]

Koltonow, A. R., Huang, J. X. (2016). Two-dimensional nanofluidics. Science 351, 1395–1396.

[21]

Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M., Freeman, B. D. (2017). Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530.

[22]

Li, C., Jiang, H. M., Liu, P. X., Zhai, Y., Yang, X. Q., Gao, L. C., Jiang, L. (2022). One porphyrin per chain self-assembled helical ion-exchange channels for ultrahigh osmotic energy conversion. J. Am. Chem. Soc. 144, 9472–9478.

[23]

Fan, H. Q., Yip, N. Y. (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. J. Membr. Sci. 573, 668–681.

[24]

Mangaud, E., Bocquet, M. L., Bocquet, L., Rotenberg, B. (2022). Chemisorbed vs physisorbed surface charge and its impact on electrokinetic transport: carbon vs boron nitride surface. J. Chem. Phys. 156, 044703.

[25]

Zhu, C. J., Xian, W. P., Song, Y. P., Zuo, X. H., Wang, Y. Q., Ma, S. Q., Sun, Q. (2022). Manipulating charge density in nanofluidic membranes for optimal osmotic energy production density. Adv. Funct. Mater. 32, 2109210.

[26]

Huang, Z. W., Fang, M. N., Tu, B., Yang, J. L., Yan, Z., Alemayehu, H. G., Tang, Z. Y., Li, L. S. (2022). Essence of the enhanced osmotic energy conversion in a covalent organic framework monolayer. ACS Nano 16, 17149–17156.

[27]

Lei, Y., Pakhira, S., Fujisawa, K., Liu, H., Guerrero-Bermea, C., Zhang, T. Y., Dasgupta, A., Martinez, L. M., Rao Singamaneni, S., Wang, K., et al. (2021). Low temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysis. Mater. Today 51, 108–116.

[28]

Higginbotham, A. L., Kosynkin, D. V., Sinitskii, A., Sun, Z. Z., Tour, J. M. (2010). Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4, 2059–2069.

[29]

Pan, H. L., Li, B., Mei, D. H., Nie, Z. M., Shao, Y. Y., Li, G. S., Li, X. S., Han, K. S., Mueller, K. T., Sprenkle, V., et al. (2017). Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2, 2674–2680.

[30]

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., et al. (2022). LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171.

[31]

Mouhat, F., Coudert, F. X., Bocquet, M. L. (2020). Structure and chemistry of graphene oxide in liquid water from first principles. Nat. Commun. 11, 1566.

[32]

Jorgensen, W. L., Maxwell, D. S., Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236.

[33]

Li, P. F., Song, L. F., Merz, K. M. Jr. (2015). Systematic parameterization of monovalent ions employing the nonbonded model. J. Chem. Theory Comput. 11, 1645–1657.

[34]

Zhou, K., Xu, Z. P. (2018). Renormalization of ionic solvation shells in nanochannels. ACS Appl. Mater. Interfaces 10, 27801–27809.

[35]

Radha, B., Esfandiar, A., Wang, F. C., Rooney, A. P., Gopinadhan, K., Keerthi, A., Mishchenko, A., Janardanan, A., Blake, P., Fumagalli, L., et al. (2016). Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225.

[36]

Goutham, S., Keerthi, A., Ismail, A., Bhardwaj, A., Jalali, H., You, Y., Li, Y. H., Hassani, N., Peng, H. K., Martins, M. V. S., et al. (2023). Beyond steric selectivity of ions using ångström-scale capillaries. Nat. Nanotechnol. 18, 596–601.

[37]

Wei, N., Lv, C. J., Xu, Z. P. (2014). Wetting of graphene oxide: a molecular dynamics study. Langmuir 30, 3572–3578.

[38]

Martínez, L., Andrade, R., Birgin, E. G., Martínez, J. M. (2009). PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164.

[39]

Liu, J., Zhao, Z. T., Li, L., Wu, Y. S., He, H. K. (2023). Molecular simulation study of 2D MXene membranes for organic solvent nanofiltration. J. Membr. Sci. 677, 121623.

[40]

Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876.

[41]

Schoch, R. B., Han, J., Renaud, P. (2008). Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883.

[42]

Fan, Q. H., E, Z. Y., Shi, L. P., Lu, Z. H., Li, P., Liang, J. J. (2023). Non-swelling oxidized graphene ribbon membrane for the effective separation of cesium and strontium from radioactive liquid waste. J. Membr. Sci. 680, 121727.

[43]

Stein, D., Kruithof, M., Dekker, C. (2004). Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901.

[44]

Cao, L., Wu, H., Fan, C. Y., Zhang, Z. M., Shi, B. B., Yang, P. F., Qiu, M., Khan, N. A., Jiang, Z. Y. (2021). Lamellar porous vermiculite membranes for boosting nanofluidic osmotic energy conversion. J. Mater. Chem. A 9, 14576–14581.

[45]

Zhou, J. L., Hao, J. R., Wu, R., Su, L. Y., Wang, J., Qiu, M., Bao, B., Ning, C. Y., Teng, C., Zhou, Y. H., et al. (2022). Maximizing ion permselectivity in MXene/MOF nanofluidic membranes for high-efficient blue energy generation. Adv. Funct. Mater. 32, 2209767.

[46]

Xu, Y. L., Song, Y. J., Xu, F. (2021). TEMPO oxidized cellulose nanofibers-based heterogenous membrane employed for concentration-gradient-driven energy harvesting. Nano Energy 79, 105468.

[47]

Zhang, Z., Zhang, P. P., Yang, S., Zhang, T., Löffler, M., Shi, H. H., Lohe, M. R., Feng, X. L. (2020). Oxidation promoted osmotic energy conversion in black phosphorus membranes. Proc. Natl. Acad. Sci. USA 117, 13959–13966.

[48]

Hao, J. R., Bao, B., Zhou, J. J., Cui, Y. S., Chen, X. C., Zhou, J. L., Zhou, Y. H., Jiang, L. (2022). A euryhaline-fish-inspired salinity self-adaptive nanofluidic diode leads to high-performance blue energy harvesters. Adv. Mater. 34, 2203109.

[49]

Ding, L., Zheng, M. T., Xiao, D., Zhao, Z. H., Xue, J., Zhang, S. Q., Caro, J., Wang, H. H. (2022). Bioinspired Ti3C2T x MXene-based ionic diode membrane for high-efficient osmotic energy conversion. Angew. Chem. Int. Ed. 61, e202206152.

[50]

Ding, L., Xiao, D., Zhao, Z. H., Wei, Y. Y., Xue, J., Wang, H. H. (2022). Ultrathin and ultrastrong kevlar aramid nanofiber membranes for highly stable osmotic energy conversion. Adv. Sci. 9, 2202869.

[51]

Monet, G., Bocquet, M. L., Bocquet, L. (2023). Unified non-equilibrium simulation methodology for flow through nanoporous carbon membrane. J. Chem. Phys. 159, 014501.

[52]

Yeh, L. H., Chen, F., Chiou, Y. T., Su, Y. S. (2017). Anomalous pH-dependent nanofluidic salinity gradient power. Small 13, 1702691.

[53]

Wang, Q. C., Wu, Y. D., Zhu, C. C., Hu, Y. H., Fu, L., Qian, Y. C., Zhang, Z. H., Li, T. Y., Li, X., Kong, X. Y., et al. (2023). Efficient solar-osmotic power generation from bioinspired anti-fouling 2D WS2 composite membranes. Angew. Chem. Int. Ed. 62, e202302938.

[54]

Akutsu-Suyama, K., Sajiki, H., Ueda, M., Asamoto, M., Tsutsumi, Y. (2022). Heavy water recycling for producing deuterium compounds. RSC Adv. 12, 24821–24829.

[55]

Zhu, J. B., Bie, Z., Cai, X. X., Jiao, Z. Y., Wang, Z. T., Tao, J. C., Song, W. X., Fan, H. J. (2022). A molecular-sieve electrolyte membrane enables separator-free zinc batteries with ultralong cycle life. Adv. Mater. 34, 2207209.

Energy Materials and Devices
Article number: 9370041
Cite this article:
Gao Y, Zhang Z, Zhao X, et al. “Island-bridge”-structured nanofluidic membranes for high-performance aqueous energy conversion and storage. Energy Materials and Devices, 2024, 2(2): 9370041. https://doi.org/10.26599/EMD.2024.9370041

883

Views

201

Downloads

0

Crossref

Altmetrics

Received: 19 April 2024
Revised: 06 May 2024
Accepted: 07 May 2024
Published: 24 June 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return