Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Aqueous batteries are promising for large-scale applications owing to their affordability, eco-friendliness, and nonflammability. However, their usability in cold regions is limited by electrolyte freezing and slow ion-transfer kinetics at subzero temperatures. This study demonstrates the stable operation of aqueous batteries in subzero conditions by integrating high-efficiency photothermal current collectors with suspension electrodes. The Ketjen black-based photothermal current collectors efficiently convert a broad spectrum of sunlight (98%, 200–2500 nm) into thermal energy, enabling rapid heat generation. Simultaneously, the high thermal conductivity of the suspension electrode ensures quick distribution of thermal energy throughout the battery. This configuration allows the cell’s core temperature to rapidly increase from −18 °C to 20 °C within 22 min under simulated solar irradiation. Additionally, an integrated light concentrator and temperature regulation system has been developed to improve heating rates and ensure the temperature stability of the cell under various climatic conditions. As a result, the cell can maintain a stable temperature of 20 °C during consecutive charge/discharge cycles, even with an ambient temperature fluctuating between −5 °C and 5 °C. This integrated photothermal battery design exhibits great potential for cold weather conditions, paving the way for the deployment of large-scale aqueous battery systems in polar regions.
Lu, Y. H., Khan, Z. A., Alvarez-Alvarado, M. S., Zhang, Y., Huang, Z. J., Imran, M. (2020). A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability 12, 5078.
Posada, J. O. G., Rennie, A. J. R., Villar, S. P., Martins, V. L., Marinaccio, J., Barnes, A., Glover, C. F., Worsley, D. A., Hall, P. J. (2017). Aqueous batteries as grid scale energy storage solutions. Renewable Sustainable Energy Rev. 68, 1174–1182.
Dunn, B., Kamath, H., Tarascon, J. M. (2011). Electrical energy storage for the grid: a battery of choices. Science 334, 928–935.
Suo, L. M., Borodin, O., Wang, Y. S., Rong, X. H., Sun, W., Fan, X., Xu, S. Y., Schroeder, M. A., Cresce, A. V., Wang, F., et al. (2017). “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189.
Al-Abbasi, M., Zhao, Y. R., He, H. G., Liu, H., Xia, H. R., Zhu, T. X., Wang, K. X., Xu, Z., Wang, H. B., Zhang, W., et al. (2024). Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries. Carbon Neutralization. 3, 108–141.
Yu, Z. C., Cao, L. Y., Liu, H. B., Wang, D. W. (2021). High voltage aqueous Zn/LiCoO2 hybrid battery under mildly alkaline conditions. Energy Storage Mater. 43, 158–164.
Nian, Q. S., Wang, J. Y., Liu, S., Sun, T. J., Zheng, S. B., Zhang, Y., Tao, Z. L., Chen, J. (2019). Aqueous batteries operated at −50 °C. Angew. Chem. Int. Ed. 58, 16994–16999.
Nian, Q. S., Sun, T. J., Liu, S., Du, H. H., Ren, X. D., Tao, Z. L. (2021). Issues and opportunities on low-temperature aqueous batteries. Chem. Eng. J. 423, 130253.
Nelson, F. E. (2003). (Un)frozen in time. Science 299, 1673–1675.
Zhu, K. J., Li, Z. P., Sun, Z. Q., Liu, P., Jin, T., Chen, X. C., Li, H. X., Lu, W. B., Jiao, L. F. (2022). Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18, 2107662.
Sui, Y. M., Yu, M. L., Xu, Y. K., Ji, X. L. (2022). Low-temperature aqueous batteries: challenges and opportunities. J. Electrochem. Soc. 169, 030537.
Jiang, L. W., Dong, D. J., Lu, Y. C. (2022). Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 1, 9120003.
Wang, C. Y., Zhang, G. S., Ge, S. H., Xu, T., Ji, Y., Yang, X. G., Leng, Y. J. (2016). Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518.
Qin, Y. D., Du, J. Y., Lu, L. G., Gao, M., Haase, F., Li, J. Q., Ouyang, M. G. (2020). A rapid lithium-ion battery heating method based on bidirectional pulsed current: heating effect and impact on battery life. Appl. Energy 280, 115957.
Zhang, L., Fan, W. T., Wang, Z. P., Li, W. H., Sauer, D. U. (2020). Battery heating for lithium-ion batteries based on multi-stage alternative currents. J. Energy Storage 32, 101885.
Ji, Y., Wang, C. Y. (2013). Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochim. Acta. 107, 664–674.
Wang, Z. X., Horseman, T., Straub, A. P., Yip, N. Y., Li, D. Y., Elimelech, M., Lin, S. H. (2019). Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763.
Liu, Y. M., Chen, J. W., Guo, D. W., Cao, M. Y., Jiang, L. (2015). Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS Appl. Mater. Interfaces 7, 13645–13652.
Zhuang, S. D., Zhou, L., Xu, W. C., Xu, N., Hu, X. Z., Li, X. Q., Lv, G. X., Zheng, Q. H., Zhu, S. N., Wang, Z. L., et al. (2018). Tuning transpiration by interfacial solar absorber-leaf engineering. Adv. Sci. 5, 1700497.
Zhang, Y. F., Wu, L., Wang, X. F., Yu, J. Y., Ding, B. (2020). Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat. Commun. 11, 3302.
Rizk, R., Louahlia, H., Gualous, H., Schaetzel, P., Alcicek, G. (2019). Experimental analysis on Li-ion battery local heat distribution. J. Therm. Anal. Calorim. 138, 1557–1571.
Capron, O., Samba, A., Omar, N., Van Den Bossche, P., Van Mierlo, J. (2015). Thermal behaviour investigation of a large and high power lithium iron phosphate cylindrical cell. Energies 8, 10017–10042.
Song, X. Y., Wang, M., Wang, S., Cheng, Z., Zhang, T., Zhu, T., Song, H. C., Yu, L. W., Xu, J., Chen, K. J. (2022). A wide temperature solid-state Li–S battery enabled by a plasmon-enhanced copper–silicon nanowire photothermal current collector. J. Mater. Chem. A 10, 22584–22591.
Chen, S., Wang, L. B., Hu, X. L. (2021). Photothermal supercapacitors at −40 °C based on bifunctional tin electrodes. Chem. Eng. J. 423, 130162.
Song, H. C., Wang, S., Song, X. Y., Wang, J., Jiang, K. Z., Huang, S. H., Han, M., Xu, J., He, P., Chen, K. J., et al. (2020). Solar-driven all-solid-state lithium–air batteries operating at extreme low temperatures. Energy Environ. Sci. 13, 1205–1211.
Wang, S., Song, H. C., Song, X. Y., Zhu, T., Ye, Y. P., Chen, J. M., Yu, L. W., Xu, J., Chen, K. J. (2021). An extra-wide temperature all-solid-state lithium-metal battery operating from −73 ℃ to 120 ℃. Energy Storage Mater. 39, 139–145.
He, Y. J., Xiao, Y. Y., Wang, R. Q., Sun, D. X., Yang, J. H., Qi, X. D., Wang, Y. (2022). Helical carbon nanotubes filled phase change composites with reversible plasticity shape memory and photo-thermal conversion functions towards wide-temperature-range battery thermal management. Compos. Part A: Appl. Sci. Manuf. 162, 107139.
Jawhari, T., Roid, A., Casado, J. (1995). Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565.
Duduta, M., Ho, B., Wood, V. C., Limthongkul, P., Brunini, V. E., Carter, W. C., Chiang, Y. M. (2011). Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511–516.
Youssry, M., Madec, L., Soudan, P., Cerbelaud, M., Guyomard, D., Lestriez, B. (2013). Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior. Phys. Chem. Chem. Phys. 15, 14476–14486.
Campos, J. W., Beidaghi, M., Hatzell, K. B., Dennison, C. R., Musci, B., Presser, V., Kumbur, E. C., Gogotsi, Y. (2013). Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors. Electrochim. Acta 98, 123–130.
Mourshed, M., Niya, S. M. R., Shabani, B. (2022). Experimental study of electronic and ionic conductivity of a carbon-based slurry electrode used in advanced electrochemical energy systems. ACS Appl. Energy Mater. 5, 11413–11430.
Han, D. X., Meng, Z. G., Wu, D. X., Zhang, C. Y., Zhu, H. T. (2011). Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res. Lett. 6, 457.
Biendicho, J. J., Flox, C., Sanz, L., Morante, J. R. (2016). Static and dynamic studies on LiNi1/3Co1/3Mn1/3O2-based suspensions for semi-solid flow batteries. Chem Sus Chem 9, 1938–1944.
Sturm, J., Frank, A., Rheinfeld, A., Erhard, S. V., Jossen, A. (2020). Impact of electrode and cell design on fast charging capabilities of cylindrical lithium-ion batteries. J. Electrochem. Soc. 167, 130505.
Wang, H., Chen, Z., Ji, Z., Wang, P., Wang, J., Ling, W., Huang, Y. (2021). Temperature adaptability issue of aqueous rechargeable batteries. Mater. Today Energy 19, 100577.
Pu, X. J., Zhao, D., Fu, C. L., Chen, Z. X., Cao, S. N., Wang, C. S., Cao, Y. L. (2021). Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem. 133, 21480–21488.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.