Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rechargeable aqueous zinc-ion batteries (ZIBs) have gained attention as promising candidates for next-generation large-scale energy storage systems due to their advantages of improved safety, environmental sustainability, and low cost. However, the zinc metal anode in aqueous ZIBs faces critical challenges, including dendrite growth, hydrogen evolution reactions, and corrosion, which severely compromise Coulombic efficiency and cycling stability, hindering their broader adoption. This review first explores the fundamental mechanisms underlying these challenges and then examines current strategies to address them, focusing on structural design, surface modifications, electrolyte optimization, and alloying treatments. Finally, potential future directions are discussed, outlining a pathway toward achieving high-performance aqueous ZIBs.
Stokes, L. C., Warshaw, C. (2017). Renewable energy policy design and framing influence public support in the united states. Nat. Energy 2, 17107.
Trancik, J. E. (2014). Renewable energy: back the renewables boom. Nature 507, 300–302.
Lund, H. (2007). Renewable energy strategies for sustainable development. Energy 32, 912–919.
Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., Pietzcker, R. C. (2017). The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140.
Obama, B. (2017). The irreversible momentum of clean energy. Science 355, 126–129.
Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D. (2011). Challenges in the development of advanced li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262.
Gür, T. M. (2018). Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767.
Zeng, X. H., Hao, J. N., Wang, Z. J., Mao, J. F., Guo, Z. P. (2019). Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 20, 410–437.
Kang, K., Meng, Y. S., Bréger, J., Grey, C. P., Ceder, G. (2006). Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980.
Tarascon, J. M., Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367.
Yoshino, A. (2012). The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800.
Mei, J., Liao, T., Liang, J., Qiao, Y. X., Dou, S. X., Sun, Z. Q. (2020). Toward promising cathode catalysts for nonlithium metal-oxygen batteries. Adv. Energy Mater. 10, 1901997.
Cabana, J., Monconduit, L., Larcher, D., Rosa Palacín, M. (2010). Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192.
Schon, T. B., McAllister, B. T., Li, P. F., Seferos, D. S. (2016). The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404.
Tang, B. Y., Shan, L. T., Liang, S. Q., Zhou, J. (2019). Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304.
Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H., Nazar, L. F. (2016). A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119.
Huang, S., Zhu, J. C., Tian, J. L., Niu, Z. Q. (2019). Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. Eur. J. 25, 14480–14494.
McBreen, J. (1994). Nickel/zinc batteries. J. Power Sources 51, 37–44.
Liu, Y. Z., Yang, Z. H., Xie, X. E., Huang, J. H., Wen, X. (2015). Layered double oxides nano-flakes derived from layered double hydroxides: preparation, properties and application in zinc/nickel secondary batteries. Electrochim. Acta 185, 190–197.
Smith, D. F., Gucinski, J. A. (1999). Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries. J. Power Sources 80, 66–71.
Mojtahedi, M., Goodarzi, M., Sharifi, B., Khaki, J. V. (2011). Effect of electrolysis condition of zinc powder production on zinc-silver oxide battery operation. Energy Conversi. Manage. 52, 1876–1880.
Yamamoto, T., Shoji, T. (1986). Rechargeable Zn|ZnSO4|MnO2-type cells. Inorg. Chim. Acta 117, L27–L28.
Xie, C. X., Liu, Y., Lu, W. J., Zhang, H. M., Li, X. F. (2019). Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage. Energy Environ. Sci. 12, 1834–1839.
Chao, D. L., Zhou, W. H., Ye, C., Zhang, Q. H., Chen, Y. G., Gu, L., Davey, K., Qiao, S. Z. (2019). An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828.
Liu, Z. X., Huang, Y., Huang, Y., Yang, Q., Li, X. L., Huang, Z. D., Zhi, C. Y. (2020). Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49, 180–232.
Xu, C. J., Li, B. H., Du, H. D., Kang, F. Y. (2012). Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935.
Zhang, Q., Luan, J. Y., Tang, Y. G., Ji, X. B., Wang, H. Y. (2020). Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59, 13180–13191.
Han, S. D., Kim, S., Li, D. G., Petkov, V., Yoo, H. D., Phillips, P. J., Wang, H., Kim, J. J., More, K. L., Key, B., et al. (2017). Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem. Mater. 29, 4874–4884.
Wan, F., Niu, Z. Q. (2019). Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 16358–16367.
Schmuch, R., Wagner, R., Hörpel, G., Placke, T., Winter, M. (2018). Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278.
Fang, G. Z., Zhou, J., Pan, A. Q., Liang, S. Q. (2018). Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501.
Huang, J. H., Guo, Z. W., Ma, Y. Y., Bin, D., Wang, Y. G., Xia, Y. Y. (2019). Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 3, 1800272.
Boruah, B. D., Mathieson, A., Wen, B., Feldmann, S., Dose, W. M., De Volder, M. (2020). Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 13, 2414–2421.
Winter, M., Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. Chem. Rev. 104, 4245–4270.
Wu, X. W., Xiang, Y. H., Peng, Q. J., Wu, X. S., Li, Y. H., Tang, F., Song, R. C., Liu, Z. X., He, Z. Q., Wu, X. M. (2017). Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 5, 17990–17997.
Li, Q., Wei, T. Y., Ma, K. X., Yang, G. Z., Wang, C. X. (2019). Boosting the cyclic stability of aqueous zinc-ion battery based on al-doped V10O24·12H2O cathode materials. ACS Appl. Mater. Interfaces 11, 20888–20894.
Kundu, D., Oberholzer, P., Glaros, C., Bouzid, A., Tervoort, E., Pasquarello, A., Niederberger, M. (2018). Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 30, 3874–3881.
Li, M., Lu, J., Chen, Z. W., Amine, K. (2018). 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561.
Fang, G. Z., Zhu, C. Y., Chen, M. H., Zhou, J., Tang, B. Y., Cao, X. X., Zheng, X. S., Pan, A. Q., Liang, S. Q. (2019). Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375.
Zhu, C. Y., Fang, G. Z., Liang, S. Q., Chen, Z. X., Wang, Z. Q., Ma, J. Y., Wang, H., Tang, B. Y., Zheng, X. S., Zhou, J. (2020). Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 24, 394–401.
Yang, Y. Q., Tang, Y., Fang, G. Z., Shan, L. T., Guo, J. S., Zhang, W. Y., Wang, C., Wang, L. B., Zhou, J., Liang, S. Q. (2018). Li+ intercalated V2O5· nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162.
Tang, B. Y., Fang, G. Z., Zhou, J., Wang, L. B., Lei, Y. P., Wang, C., Lin, T. Q., Tang, Y., Liang, S. Q. (2018). Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587.
Liu, C. F., Neale, Z., Zheng, J. Q., Jia, X. X., Huang, J. J., Yan, M. Y., Tian, M., Wang, M. S., Yang, J. H., Cao, G. Z. (2019). Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285.
Zhang, L. Y., Chen, L., Zhou, X. F., Liu, Z. P. (2015). Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci. Rep. 5, 18263.
Zhang, L. Y., Chen, L., Zhou, X. F., Liu, Z. P. (2015). Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930.
Zhao, Q., Huang, W. W., Luo, Z. Q., Liu, L. J., Lu, Y., Li, Y. X., Li, L., Hu, J. Y., Ma, H., Chen, J. (2018). High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761.
Zhao, Z. Q., Fan, X. Y., Ding, J., Hu, W. B., Zhong, C., Lu, J. (2019). Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization. ACS Energy Lett. 4, 2259–2270.
Zhang, R., Chen, X. R., Chen, X., Cheng, X. B., Zhang, X. Q., Yan, C., Zhang, Q. (2017). Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768.
Zeng, Y. X., Zhang, X. Y., Meng, Y., Yu, M. H., Yi, J. N., Wu, Y. Q., Lu, X. H., Tong, Y. X. (2017). Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 29, 1700274.
Yi, Z. H., Chen, G. Y., Hou, F., Wang, L. Q., Liang, J. (2021). Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11, 2003065.
Mainar, A. R., Leonet, O., Bengoechea, M., Boyano, I., de Meatza, I., Kvasha, A., Guerfi, A., Alberto Blázquez, J. (2016). Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. Int. J. Energy Res. 40, 1032–1049.
Lu, W. J., Xie, C. X., Zhang, H. M., Li, X. F. (2018). Inhibition of zinc dendrite growth in zinc-based batteries. ChemSusChem 11, 3996–4006.
Yufit, V., Tariq, F., Eastwood, D. S., Biton, M., Wu, B., Lee, P. D., Brandon, N. P. (2019). Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3, 485–502.
Konarov, A., Voronina, N., Jo, J. H., Bakenov, Z., Sun, Y. K., Myung, S. T. (2018). Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3, 2620–2640.
Zhao, Z. M., Zhao, J. W., Hu, Z. L., Li, J. D., Li, J. J., Zhang, Y. J., Wang, C., Cui, G. L. (2019). Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949.
Al-Hinai, A. T., Al-Hinai, M. H., Dutta, J. (2014). Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media. Mater. Res. Bull. 49, 645–650.
Chao, D. L., Zhou, W. H., Xie, F. X., Ye, C., Li, H., Jaroniec, M., Qiao, S. Z. (2020). Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098.
Blanc, L. E., Kundu, D., Nazar, L. F. (2020). Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799.
Lee, B. S., Cui, S., Xing, X., Liu, H. D., Yue, X. J., Petrova, V., Lim, H. D., Chen, R. K., Liu, P. (2018). Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 10, 38928–38935.
Li, C. P., Xie, X. S., Liang, S. Q., Zhou, J. (2020). Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146–159.
Yang, Q., Bang, G. J., Guo, Y., Liu, Z. X., Yon, B. X., Wang, D. H., Huang, Z. D., Li, X. L., Fan, J., Zhi, C. Y. (2019). Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31, 1903778.
Zhao, J. W., Zhang, J., Yang, W. H., Chen, B. B., Zhao, Z. M., Qiu, H. Y., Dong, S. M., Zhou, X. H., Cui, G. L., Chen, L. Q. (2019). "Water-in-deep eutectic solvent" electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634.
González, M. A., Trócoli, R., Pavlovic, I., Barriga, C., La Mantia, F. (2016). Layered double hydroxides as a suitable substrate to improve the efficiency of Zn anode in neutral pH Zn-ion batteries. Electrochem. Commun. 68, 1–4.
Krężel, A., Maret, W. (2016). The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 611, 3–19.
Trócoli, R., La Mantia, F. (2015). An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8, 481–485.
Li, Y. G., Dai, H. J. (2014). Recent advances in zinc-air batteries. Chem. Soc. Rev. 43, 5257–5275.
Alfaruqi, M. H., Islam, S., Mathew, V., Song, J. J., Kim, S., Tung, D. P., Jo, J., Kim, S., Baboo, J. P., Xiu, Z. L., et al. (2017). Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Appl. Surf. Sci. 404, 435–442.
Cho, Y. D., Fey, G. T. K. (2008). Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution. J. Power Sources 184, 610–616.
Ibrahim, M. A. M. (2000). Improving the throwing power of acidic zinc sulfate electroplating baths. 3.0.CO;2-5">J. Chem. Technol. Biotechnol. 75, 745–755.
Kühne, H. M., Schefold, J. (1990). Tafel plots from illuminated photoelectrodes: a new insight into charge transfer mechanism. J. Electrochem. Soc. 137, 568–575.
Miles, M. H., Kissel, G., Lu, P. W. T., Srinivasan, S. (1976). Effect of temperature on electrode kinetic parameters for hydrogen and oxygen evolution reactions on nickel electrodes in alkaline solutions. J. Electrochem. Soc. 123, 332–336.
Dong, H. X., Lei, T., He, Y. H., Xu, N. P., Huang, B. Y., Liu, C. T. (2011). Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. Int. J. Hydrogen Energy 36, 12112–12120.
Wippermann, K., Schultze, J. W., Kessel, R., Penninger, J. (1991). The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives. Corros. Sci. 32, 205–230.
Hoang, T. K. A., The Nam Long Doan, Sun, K. E. K., Chen, P. (2015). Corrosion chemistry and protection of zinc & zinc alloys by polymer-containing materials for potential use in rechargeable aqueous batteries. RSC Adv. 5, 41677–41691.
Li, H. F., Xu, C. J., Han, C. P., Chen, Y. Y., Wei, C. G., Li, B. H., Kang, F. Y. (2015). Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J. Electrochem. Soc. 162, A1439–A1444.
Pan, H. L., Ellis, J. F., Li, X. L., Nie, Z. M., Chang, H. J., Reed, D. (2019). Electrolyte effect on the electrochemical performance of mild aqueous zinc-electrolytic manganese dioxide batteries. ACS Appl. Mater. Interfaces 11, 37524–37530.
Tie, Z. W., Liu, L. J., Deng, S. Z., Zhao, D. B., Niu, Z. Q. (2020). Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 59, 4920–4924.
Oberholzer, P., Tervoort, E., Bouzid, A., Pasquarello, A., Kundu, D. (2019). Oxide versus nonoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS Appl. Mater. Interfaces 11, 674–682.
Huang, J. H., Wang, Z., Hou, M. Y., Dong, X. L., Liu, Y., Wang, Y. G., Xia, Y. Y. (2018). Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906.
Liu, W. B., Dong, L. B., Jiang, B. Z., Huang, Y. F., Wang, X. L., Xu, C. J., Kang, Z., Mou, J., Kang, F. Y. (2019). Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochim. Acta 320, 134565.
Guo, W. B., Cong, Z. F., Guo, Z. H., Chang, C. Y., Liang, X. Q., Liu, Y. D., Hu, W. G., Pu, X. (2020). Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Mater. 30, 104–112.
Lee, J. H., Kim, R., Kim, S., Heo, J., Kwon, H., Yang, J. H., Kim, H. T. (2020). Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries. Energy Environ. Sci. 13, 2839–2848.
Zeng, Y. X., Zhang, X. Y., Qin, R. F., Liu, X. Q., Fang, P. P., Zheng, D. Z., Tong, Y. X., Lu, X. H. (2019). Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903676.
Xue, P., Guo, C., Li, L., Li, H. P., Luo, D., Tan, L. C., Chen, Z. W. (2022). A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv. Mater. 34, 2110047.
Jin, X. T., Song, L., Dai, C. L., Xiao, Y. K., Han, Y. Y., Li, X. Y., Wang, Y., Zhang, J. T., Zhao, Y., Zhang, Z. P., et al. (2022). A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv. Mater. 34, 2109450.
Wang, L. P., Li, N. W., Wang, T. S., Yin, Y. X., Guo, Y. G., Wang, C. R. (2017). Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177.
Kang, Z., Wu, C. L., Dong, L. B., Liu, W. B., Mou, J., Zhang, J. W., Chang, Z. W., Jiang, B. Z., Wang, G. X., Kang, F. Y., et al. (2019). 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain. Chem. Eng. 7, 3364–3371.
Cao, Q. H., Gao, Y., Pu, J., Zhao, X., Wang, Y. X., Chen, J. P., Guan, C. (2023). Gradient design of imprinted anode for stable Zn-ion batteries. Nat. Commun. 14, 641.
Xie, X. S., Liang, S. Q., Gao, J. W., Guo, S., Guo, J. B., Wang, C., Xu, G. Y., Wu, X. W., Chen, G., Zhou, J. (2020). Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510.
Yang, H. J., Chang, Z., Qiao, Y., Deng, H., Mu, X. W., He, P., Zhou, H. S. (2020). Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 9377–9381.
Hao, J. N., Li, B., Li, X. L., Zeng, X. H., Zhang, S. L., Yang, F. H., Liu, S. L., Li, D., Wu, C., Guo, Z. P. (2020). An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32, 2003021.
Wang, Y. Y., Chen, Y. J., Liu, W., Ni, X. Y., Qing, P., Zhao, Q. W., Wei, W. F., Ji, X. B., Ma, J. M., Chen, L. B. (2021). Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9, 8452–8461.
Yang, Y., Liu, C. Y., Lv, Z. H., Yang, H., Zhang, Y. F., Ye, M. H., Chen, L. B., Zhao, J. B., Li, C. C. (2021). Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33, 2007388.
Budevski, E., Staikov, G., Lorenz, W. J. (2000). Electrocrystallization: nucleation and growth phenomena. Electrochim. Acta 45, 2559–2574.
Xie, F. X., Li, H., Wang, X. S., Zhi, X., Chao, D. L., Davey, K., Qiao, S. Z. (2021). Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11, 2003419.
Li, B., Yang, K. Y., Ma, J. B., Shi, P. R., Chen, L. K., Chen, C. M., Hong, X., Cheng, X., Tang, M. C., He, Y. B., et al. (2022). Multicomponent copper-zinc alloy layer enabling ultra-stable zinc metal anode of aqueous Zn-ion battery. Angew. Chem. Int. Ed. 61, e202212587.
Yu, H. M., Chen, Y. J., Wei, W. F., Ji, X. B., Chen, L. B. (2022). A functional organic zinc-chelate formation with nanoscaled granular structure enabling long-term and dendrite-free Zn anodes. ACS Nano 16, 9736–9747.
Zhang, S. J., Ye, J. J., Ao, H. S., Zhang, M. Y., Li, X. L., Xu, Z. B., Hou, Z. G., Qian, Y. T. (2023). In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Res. 16, 449–457.
Zhou, M., Guo, S., Fang, G. Z., Sun, H. M., Cao, X. X., Zhou, J., Pan, A. Q., Liang, S. Q. (2021). Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 55, 549–556.
Zhou, J. H., Xie, M., Wu, F., Mei, Y., Hao, Y. T., Huang, R. L., Wei, G. L., Liu, A. N., Li, L., Chen, R. J. (2021). Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33, 2101649.
Yin, Y. B., Wang, S. N., Zhang, Q., Song, Y., Chang, N. N., Pan, Y. W., Zhang, H. M., Li, X. F. (2020). Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 32, 1906803.
Toulfatzis, A. I., Pantazopoulos, G. A., Paipetis, A. S. (2014). Fracture behavior and characterization of lead-free brass alloys for machining applications. J. Mater. Eng. Perform. 23, 3193–3206.
Meng, H., Ran, Q., Dai, T. Y., Shi, H., Zeng, S. P., Zhu, Y. F., Wen, Z., Zhang, W., Lang, X. Y., Zheng, W. T., et al. (2022). Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128.
Liu, C., Luo, Z., Deng, W. T., Wei, W. F., Chen, L. B., Pan, A. Q., Ma, J. M., Wang, C. W., Zhu, L. M., Xie, L. L., et al. (2021). Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 6, 675–683.
Zheng, J. X., Huang, Z. H., Zeng, Y., Liu, W. Q., Wei, B. B., Qi, Z. B., Wang, Z. C., Xia, C., Liang, H. F. (2022). Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22, 1017–1023.
Xu, F., Qu, C. Z., Lu, Q. Q., Meng, J. S., Zhang, X. H., Xu, X. S., Qiu, Y. Q., Ding, B. C., Yang, J. Y., Cao, F. R., et al. (2022). Atomic Sn-enabled high-utilization, large-capacity, and long-life Na anode. Sci. Adv. 8, eabm7489.
Zhang, Q., Luan, J. Y., Huang, X. B., Wang, Q., Sun, D., Tang, Y. G., Ji, X. B., Wang, H. Y. (2020). Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961.
Zheng, J. X., Zhao, Q., Tang, T., Yin, J. E., Quilty, C. D., Renderos, G. D., Liu, X. T., Deng, Y., Wang, L., Bock, D. C., et al. (2019). Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648.
Xie, C. L., Liu, S. F., Yang, Z. F., Ji, H. M., Zhou, S. H., Wu, H., Hu, C., Tang, Y. G., Ji, X. B., Zhang, Q., et al. (2023). Discovering the intrinsic causes of dendrite formation in zinc metal anodes: lattice defects and residual stress. Angew. Chem. Int. Ed. 62, e202218612.
Xia, A. L., Pu, X. M., Tao, Y. Y., Liu, H. M., Wang, Y. G. (2019). Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl. Surf. Sci. 481, 852–859.
Gao, S. S., Zhang, Z., Mao, F. F., Liu, P. G., Zhou, Z. (2023). Advances and strategies of electrolyte regulation in Zn-ion batteries. Mater. Chem. Front. 7, 3232–3258.
Olbasa, B. W., Fenta, F. W., Chiu, S. F., Tsai, M. C., Huang, C. J., Jote, B. A., Beyene, T. T., Liao, Y. F., Wang, C. H., Su, W. N., et al. (2020). High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl. Energy Mater. 3, 4499–4508.
Zhang, N., Cheng, F. Y., Liu, J. X., Wang, L. B., Long, X. H., Liu, X. S., Li, F. J., Chen, J. (2017). Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405.
Chae, M. S., Heo, J. W., Lim, S. C., Hong, S. T. (2016). Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes. Inorg. Chem. 55, 3294–3301.
Hao, J. W., Mou, J., Zhang, J. W., Dong, L. B., Liu, W. B., Xu, C. J., Kang, F. Y. (2018). Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178.
Zhou, J., Shan, L. T., Wu, Z. X., Guo, X., Fang, G. Z., Liang, S. Q. (2018). Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54, 4457–4460.
Yan, C., Li, H. R., Chen, X., Zhang, X. Q., Cheng, X. B., Xu, R., Huang, J. Q., Zhang, Q. (2019). Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422–9429.
Zhang, Q., Xia, K. X., Ma, Y. L., Lu, Y., Li, L., Liang, J., Chou, S. L., Chen, J. (2021). Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6, 2704–2712.2.
Wang, F., Borodin, O., Gao, T., Fan, X. L., Sun, W., Han, F. D., Faraone, A., Dura, J. A., Xu, K., Wang, C. S. (2018). Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549.
Xu, M. Y., Zhu, T., Zhang, J. Z. H. (2019). Molecular dynamics simulation of zinc ion in water with an ab initio based neural network potential. J. Phys. Chem. A 123, 6587–6595.
Sun, K. E. K., Hoang, T. K. A., The Nam Long Doan, Yu, Y., Zhu, X., Tian, Y., Chen, P. (2017). Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9, 9681–9687.
Lin, C. Y., Yang, X. H., Xiong, P. X., Lin, H., He, L. J., Yao, Q., Wei, M. D., Qian, Q. R., Chen, Q. H., Zeng, L. X. (2022). High-rate, large capacity, and long life dendrite-free Zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Adv. Sci. 9, 2201433.
Geng, L. S., Meng, J. S., Wang, X. P., Han, C. H., Han, K., Xiao, Z. T., Huang, M., Xu, P., Zhang, L., Zhou, L., et al. (2022). Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61, e202206717.
Zhang, Q., Luan, J. Y., Fu, L., Wu, S. G., Tang, Y. G., Ji, X. B., Wang, H. Y. (2019). The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58, 15841–15847.
Liu, P. G., Guo, J., Chen, X. Y., Wang, T., Huang, Y. P., Gao, S. S., Wang, T., Wu, D. L., Liu, K. Y. (2024). A zincophilic molecular brush for a dendrite-free, corrosion-resistant, zinc metal anode with a long life cycle. Nano Res. 17, 390–396.
Shi, J. Q., Sun, T. J., Bao, J. Q., Zheng, S. B., Du, H. H., Li, L., Yuan, X. M., Ma, T., Tao, Z. L. (2021). "Water-in-deep eutectic solvent" electrolytes for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 31, 2102035.
Xu, W. N., Zhao, K. N., Huo, W. C., Wang, Y. Z., Yao, G., Gu, X., Cheng, H. W., Mai, L. Q., Hu, C. G., Wang, X. D. (2019). Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281.
Ding, F., Xu, W., Graff, G. L., Zhang, J., Sushko, M. L., Chen, X. L., Shao, Y. Y., Engelhard, M. H., Nie, Z. M., Xiao, J. L., et al. (2013). Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456.
Soundharrajan, V., Sambandam, B., Kim, S., Islam, S., Jo, J., Kim, S., Mathew, V., Sun, Y. K., Kim, J. (2020). The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Mater. 28, 407–417.
Wan, F., Zhang, L. L., Dai, X., Wang, X. Y., Niu, Z. Q., Chen, J. (2018). Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656.
Qiu, M. J., Sun, P., Han, K., Pang, Z. J., Du, J., Li, J. L., Chen, J., Wang, Z. L., Mai, W. J. (2023). Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80 °C. Nat. Commun. 14, 601.
Li, C., Sun, Z. T., Yang, T., Yu, L. H., Wei, N., Tian, Z. N., Cai, J. S., Lv, J. Z., Shao, Y. L., Rümmeli, M. H., et al. (2020). Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes. Adv. Mater. 32, 2003425.
Bruce, P. G., Freunberger, S. A., Hardwick, L. J., Tarascon, J. M. (2012). Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29.
Xia, M. T., Fu, H. W., Lin, K. R., Rao, A. M., Cha, L. M., Liu, H., Zhou, J., Wang, C. X., Lu, B. A. (2024). Hydrogen-bond regulation in organic/aqueous hybrid electrolyte for safe and high-voltage K-ion batteries. Energy Environ. Sci. 17, 1255–1265.
Tang, Y., Liu, C. X., Zhu, H. R., Xie, X. S., Gao, J. W., Deng, C. B., Han, M. M., Liang, S. Q., Zhou, J. (2020). Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116.
Ma, L. T., Chen, S. M., Li, N., Liu, Z. X., Tang, Z. J., Zapien, J. A., Chen, S. M., Fan, J., Zhi, C. Y. (2020). Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32, 1908121.
Cai, Z., Ou, Y. T., Wang, J. D., Xiao, R., Fu, L., Yuan, Z., Zhan, R. M., Sun, Y. M. (2020). Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211.
Zhou, J. H., Wu, F., Mei, Y., Hao, Y. T., Li, L., Xie, M., Chen, R. J. (2022). Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv. Mater. 34, 2200782.
Fayette, M., Chang, H. J., Rodríguez-Pérez, I. A., Li, X. L., Reed, D. (2020). Electrodeposited zinc-based films as anodes for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12, 42763–42772.
Wang, S. B., Ran, Q., Yao, R. Q., Shi, H., Wen, Z., Zhao, M., Lang, X. Y., Jiang, Q. (2020). Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634.
Tian, H. J., Li, Z., Feng, G. X., Yang, Z. Z., Fox, D., Wang, M. Y., Zhou, H., Zhai, L., Kushima, A., Du, Y. G., et al. (2021). Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 12, 237.
Lee, C. W., Sathiyanarayanan, K., Eom, S. W., Yun, M. S. (2006). Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery. J. Power Sources 160, 1436–1441.
Kang, L., Cui, M., Jiang, F., Gao, Y., Luo, H., Liu, J., Liang, W., Zhi, C. (2018). Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090.
Zhao, J. W., Li, J. J., Han, P. X., Cui, G. L. (2017). An aqueous Zn-ion capacitor ( in Chinese). J. Electrochem. 23, 581–585.
Wang, Y. J., Cao, Q. H., Guan, C., Cheng, C. W. (2020). Recent advances on self-supported arrayed bifunctional oxygen electrocatalysts for flexible solid-state Zn-Air batteries. Small 16, 2002902.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.