AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (36.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Review of all-inorganic perovskites and their tandem solar cells with crystalline silicon

Hongjun Wu1,2Zhaorui Sun1Haonan Li1Xiuhua Chen1,2( )Wenhui Ma1Shaoyuan Li3Zhengjie Chen3Fengshuo Xi3
School of Materials and Energy, Yunnan University, Kunming 650500, China
Institute of International Rivers and ECO-Security, Yunnan University, Kunming 650500, China
School of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650500, China
Show Author Information

Graphical Abstract

Abstract

In widely studied organic–inorganic hybrid perovskites, the organic component tends to volatilize and decompose under high temperatures, oxygen, and humidity, which adversely affects the performance and longevity of the associated solar cells. In contrast, all-inorganic perovskites demonstrate superior stability under these conditions and offer photoelectric properties comparable to those of their hybrid counterparts. The potential of tandem solar cells (TSCs) made from all-inorganic perovskites is especially promising. This review is the first to address recent advancements in TSCs that use all-inorganic perovskites and crystalline silicon (c-Si), both domestically and internationally. This work provides a systematic and thorough analysis of the current challenges faced by these systems and proposes rational solutions. Additionally, we elucidate the regulatory mechanisms of all-inorganic perovskites and their TSCs when combined with c-Si, summarizing the corresponding patterns. Finally, we outline future research directions for all-inorganic perovskites and their TSCs with c-Si. This work offers valuable insights and references for the continued advancement of perovskite-based TSCs.

References

[1]

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051.

[2]

Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., et al. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591.

[3]

Liu, Z., Chen, X. L., Hou, G. F., Li, Y. L., Ding, Y., Zhao, Y., Zhang, X. D. (2021). Research progress of high-efficiency perovskite solar cells and their tandem cells ( in Chinese). Mater. Rep. 35, 15031–15046.

[4]

Hwang, B., Lee, J. S. (2017). Hybrid organic-inorganic perovskite memory with long-term stability in air. Sci. Rep. 7, 673.

[5]

Pellegrino, G., Colella, S., Deretzis, I., Condorelli, G. G., Smecca, E., Gigli, G., La Magna, A., Alberti, A. (2015). Texture of MAPbI3 layers assisted by chloride on flat TiO2 substrates. J. Phys. Chem. C 119, 19808–19816.

[6]

Lee, J. W., Kim, D. H., Kim, H. S., Seo, S. W., Cho, S. M., Park, N. G. (2015). Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310.

[7]

Aristidou, N., Sanchez-Molina, I., Chotchuangchutchaval, T., Brown, M., Martinez, L., Rath, T., Haque, S. A. (2015). The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208–8212.

[8]

Boyd, C. C., Cheacharoen, R., Leijtens, T., McGehee, M. D. (2019). Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451.

[9]

Xiao, C. X., Li, Z., Guthrey, H., Moseley, J., Yang, Y., Wozny, S., Moutinho, H., To, B., Berry, J. J., Gorman, B., et al. (2015). Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy. J. Phys. Chem. C 119, 26904–26911.

[10]

De Roo, J., Ibáñez, M., Geiregat, P., Nedelcu, G., Walravens, W., Maes, J., Martins, J. C., Van Driessche, I., Kovalenko, M. V., Hens, Z. (2016). Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081.

[11]

Richter, A., Hermle, M., Glunz, S. W. (2013). Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovoltaics 3, 1184–1191.

[12]

Keppner, H., Torres, P., Flückiger, R., Meier, J., Shah, A., Fortmann, C., Fath, P., Willeke, G., Happle, K., Kiess, H. (1994). Passivation properties of amorphous and microcrystalline silicon layers deposited by VHF-GD for crystalline silicon solar cells. Solar Energy Mater. Solar Cells 34, 201–209.

[13]

Wang, Y. X., Zhao, H. R., Piotrowski, M., Han, X., Ge, Z. S., Dong, L. Z., Wang, C. J., Pinisetty, S. K., Balguri, P. K., Bandela, A. K., et al. (2022). Cesium lead iodide perovskites: optically active crystal phase stability to surface engineering. Micromachines 13, 1318.

[14]

Travis, W., Glover, E. N. K., Bronstein, H., Scanlon, D. O., Palgrave, R. G. (2016). On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556.

[15]

Steele, J. A., Jin, H. D., Dovgaliuk, I., Berger, R. F., Braeckevelt, T., Yuan, H. F., Martin, C., Solano, E., Lejaeghere, K., Rogge, S. M. J., et al. (2019). Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684.

[16]

Choi, H., Jeong, J., Kim, H. B., Kim, S., Walker, B., Kim, G. H., Kim, J. Y. (2014). Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85.

[17]

Eperon, G. E., Paternò, G. M., Sutton, R. J., Zampetti, A., Haghighirad, A. A., Cacialli, F., Snaith, H. J. (2015). Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695.

[18]

Xiang, S. S., Fu, Z. H., Li, W. P., Wei, Y., Liu, J. M., Liu, H. C., Zhu, L. Q., Zhang, R. F., Chen, H. N. (2018). Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett. 3, 1824–1831.

[19]

Swarnkar, A., Marshall, A. R., Sanehira, E. M., Chernomordik, B. D., Moore, D. T., Christians, J. A., Chakrabarti, T., Luther, J. M. (2016). Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95.

[20]

Tan, S., Yu, B. C., Cui, Y. Q., Meng, F. Q., Huang, C. J., Li, Y. M., Chen, Z. J., Wu, H. J., Shi, J. J., Luo, Y. H., et al. (2022). Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew. Chem. Int. Ed. 61, e202201300.

[21]

Xu, D. F., Wang, J. G., Duan, Y. W., Yang, S. M., Zou, H., Yang, L., Zhang, N., Zhou, H., Lei, X. R., Wu, M. Z., et al. (2023). Highly-stable CsPbI3 perovskite solar cells with an efficiency of 21.11% via fluorinated 4-amino-benzoate cesium bifacial passivation. Adv. Funct. Mater. 33, 2304237.

[22]

Tan, X., Wang, S. B., Zhang, Q. X., Liu, H. C., Li, W. P., Zhu, L. Q., Chen, H. N. (2023). Stabilizing CsPbI3 perovskite for photovoltaic applications. Matter 6, 691–727.

[23]

Xu, H. Z., Duan, J. L., Zhao, Y. Y., Jiao, Z. B., He, B. L., Tang, Q. W. (2018). 9.13%-Efficiency and stable inorganic CsPbBr3 solar cells. Lead-free CsSnBr3-xIx quantum dots promote charge extraction. J. Power Sources 399, 76–82.

[24]

Kulbak, M., Cahen, D., Hodes, G. (2015). How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Letters 6, 2452–2456.

[25]

Tong, G. Q., Chen, T. T., Li, H., Qiu, L. B., Liu, Z. H., Dang, Y. Y., Song, W. T., Ono, L. K., Jiang, Y., Qi, Y. B. (2019). Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy 65, 104015.

[26]

Zhou, Q. W., Duan, J. L., Yang, X. Y., Duan, Y. Y., Tang, Q. W. (2020). Interfacial strain release from the WS2/CsPbBr3 van Der Waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew. Chem. 132, 22181–22185.

[27]

Zhou, Q. W., Duan, J. L., Du, J., Guo, Q. Y., Zhang, Q. Y., Yang, X. Y., Duan, Y. Y., Tang, Q. W. (2021). Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv. Sci. 8, 2101418.

[28]

Duan, J. L., Zhao, Y. Y., Yang, X. Y., Wang, Y. D., He, B. L., Tang, Q. W. (2018). Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V. Adv. Energy Mater. 8, 1802346.

[29]

Nam, J. K., Jung, M. S., Chai, S. U., Choi, Y. J., Kim, D., Park, J. H. (2017). Unveiling the crystal formation of cesium lead mixed-halide perovskites for efficient and stable solar cells. J. Phys. Chem. Lett. 8, 2936–2940.

[30]

Fu, L., Zhang, Y. N., Chang, B. H., Li, B., Zhou, S. J., Zhang, L. Y., Yin, L. W. (2018). A fluorine-modulated bulk-phase heterojunction and tolerance factor for enhanced performance and structure stability of cesium lead halide perovskite solar cells. J. Mater. Chem. A 6, 13263–13270.

[31]

Bai, D. L., Zhang, J. R., Jin, Z. W., Bian, H., Wang, K., Wang, H. R., Liang, L., Wang, Q., Liu, S. F. (2018). Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 3, 970–978.

[32]

Zeng, Z. B., Zhang, J., Gan, X. L., Sun, H. R., Shang, M. H., Hou, D. G., Lu, C. J., Chen, R. J., Zhu, Y. J., Han, L. Y. (2018). In situ grain boundary functionalization for stable and efficient inorganic CsPbI2Br perovskite solar cells. Adv. Energy Mater. 8, 1801050.

[33]

Chen, C. Y., Zhang, F. H., Huang, J., Xue, T., Wang, X., Zheng, C. F., Wang, H., Jia, C. L. (2023). Polymer poly (ethylene oxide) additive for high-stability all-inorganic CsPbI3-xBrx perovskite solar cells. Energies 16, 7849.

[34]

Zhao, Y., Zhao, K., Wan, L., Tan, Y. L., Wang, Z. S. (2022). Black phase of inorganic perovskite stabilized with carboxyimidazolium iodide for stable and efficient inverted perovskite solar cells. ACS Appl. Mater. Interfaces 14, 6906–6915.

[35]

Li, M. H., Liu, S. C., Qiu, F. Z., Zhang, Z. Y., Xue, D. J., Hu, J. S. (2020). High-efficiency CsPbI2Br perovskite solar cells with dopant-free poly(3-hexylthiophene) hole transporting layers. Adv. Energy Mater. 10, 2000501.

[36]

Ma, Q. S., Huang, S. J., Wen, X. M., Green, M. A., Ho-Baillie, A. W. Y. (2016). Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6, 1502202.

[37]

Zhu, W. D., Zhang, Q. N., Chen, D. Z., Zhang, Z. Y., Lin, Z. H., Chang, J. J., Zhang, J. C., Zhang, C. F., Hao, Y. (2018). Intermolecular exchange boosts efficiency of air stable carbon-based all-inorganic plannar CsPbIBr2 perovskite solar cells to over 9%. Adv. Energy Mater. 8, 1802080.

[38]

Jiang, Y. Z., Yuan, J., Ni, Y. X., Yang, J. E., Wang, Y., Jiu, T., Yuan, M. J., Chen, J. (2018). Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2, 1356–1368.

[39]

Liang, J., Zhao, P. Y., Wang, C. X., Wang, Y. R., Hu, Y., Zhu, G. Y., Ma, L. B., Liu, J., Jin, Z. (2017). CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139, 14009–14012.

[40]

Wang, X. J., Ran, X. Q., Liu, X. T., Gu, H., Zuo, S. W., Hui, W., Lu, H., Sun, B., Gao, X. Y., Zhang, J., et al. (2020). Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic. Angew. Chem. Int. Ed. 59, 13354–13361.

[41]

Jiang, H., Feng, J. S., Zhao, H., Li, G. J., Yin, G. N., Han, Y., Yan, F., Liu, Z. K., Liu, S. (2018). Low temperature fabrication for high performance flexible CsPbI2Br perovskite solar cells. Adv. Sci. 5, 1801117.

[42]

Iqbal, Z., Félix, R., Musiienko, A., Thiesbrummel, J., Köbler, H., Gutierrez-Partida, E., Gries, T. W., Hüsam, E., Saleh, A., Wilks, R. G., et al. (2024). Unveiling the potential of ambient air annealing for highly efficient inorganic CsPbI3 perovskite solar cells. J. Am. Chem. Soc. 146, 4642–4651.

[43]

Li, Y., Zhang, Y., Zhu, P., Li, J., Wu, J., Zhang, J., Zhou, X., Jiang, Z., Wang, X., Xu, B., Xu (2023). Achieving 17.46% efficiency CsPbI2Br perovskite solar cells via multifunction lead chloride-modified ZnO electron transporting layer. Adv. Funct. Mater. 33, 2309010.

[44]

Duan, X. X., Duan, J. L., Liu, N. M., Li, J. B., Dou, J., Zhang, X. Y., Guo, Q. Y., Wang, Y. L., Wang, Z., Zhao, Y. Y., et al. (2024). Inhibited superoxide-induced halide oxidation with a bioactive factor for stabilized inorganic perovskite solar cells. SusMat 4, e233.

[45]

Kim, K. S., Jin, I. S., Park, S. H., Lim, S. J., Jung, J. W. (2020). Methylammonium iodide-mediated controlled crystal growth of CsPbI2Br films for efficient and stable all-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 12, 36228–36236.

[46]

Yu, B. C., Zhang, H. Y., Wu, J. H., Li, Y. S., Li, H. S., Li, Y. M.; Shi, J. J., Wu, H. J.; Li, D. M., Luo, Y. H., Meng, Q. B. (2018). Solvent-engineering toward CsPb(I x Br1- x )3 films for high-performance inorganic perovskite solar cells. J. Mater. Chem. A 6, 19810–19816.

[47]

Almutairi, B. S., Khan, M. I., Mujtaba, A., Subhani, W., Yousef, E. S., Alotaibi, N., Hussain, S., Almaral-Sánchez, J. L. (2024). Impact of La doping on the optoelectronic and structural properties of CsPbIBr2 perovskite solar cell. Opt. Mater. 152, 115415.

[48]

Khan, U., Rauf, A., Feng, S., Akbar, A. R., Peng, G. Q., Zheng, Q. F., Wu, R. G., Khan, M., Peng, Z. C., Liu, F. D. (2023). Thermally stable and efficient CsF-doped all-inorganic CsPbIBr2 perovskite solar cells exceeding 15% PCE. Inorg. Chem. Commun. 153, 110862.

[49]

Cheng, J. J., Dong, J. J. (2024). Isobutyramide additive to improve the performance of CsPbBr3 perovskite solar cells prepared by green solvent. Phys. Status Solidi A-Appl. Mater. Sci. 221, 2400001.

[50]

He, Y. Q., Li, Z. Y., Liu, M. Y., Liu, S. Q., Fu, J. J., Zhang, Y. G., Li, Q. Y., Tong, Y. P., Zheng, Z. (2023). Enhanced performance of BiI3-incorporated CsPbBr3 solar cells. Dalton Trans. 52, 17308–17314.

[51]

Zhou, L., Guo, X., Lin, Z. H., Ma, J., Su, J., Hu, Z. S., Zhang, C. F., Liu, S., Chang, J. J., Hao, Y. (2019). Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy 60, 583–590.

[52]

Yuan, H. W., Zhao, Y. Y., Duan, J. L., Wang, Y. D., Yang, X. Y., Tang, Q. W. (2018). All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 6, 24324–24329.

[53]

Yan, D., Lu, X. W., Zhao, S. Y., Zhang, Z. H., Lu, M. X., Feng, J. T., Zhang, J. C., Spencer, K., Watson, T., Li, M., et al. (2022). Lead leaching of perovskite solar cells in aqueous environments: a quantitative investigation. Solar RRL 6, 2200332.

[54]

Yin, G. N., Zhao, H., Jiang, H., Yuan, S. H., Niu, T. Q., Zhao, K., Liu, Z. K., Liu, S. (2018). Precursor engineering for all-Inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency. Adv. Funct. Mater. 28, 1803269.

[55]

Wang, H. S., Sun, J., Gu, Y. S., Xu, C. Q., Lu, Y. W., Hu, J. T., Chen, T., Zhu, C. F., Luo, P. F. (2022). Solvent-engineering-processed CsPbIBr2 inorganic perovskite solar cells with efficiency of ~11%. Solar Energy Mater. Solar Cells 238, 111640.

[56]

Lee, C., Chae, K., Ko, Y., Lee, C., Kim, T., Park, S., Jung, M. Y., Kim, J., Yun, Y. J., Lee, M., Jun, Y. (2023). Phase stability improvement of a γ-CsPbI3 perovskite solar cell utilizing a Barium Bis(trifluoromethanesulfonimide) solution. ACS Appl. Mater. Interfaces 15, 51050–51058.

[57]

Dong, C., Han, X. X., Zhao, Y., Li, J. J., Chang, L., Zhao, W. N. (2018). A green anti-solvent process for high performance carbon-based CsPbI2Br all-inorganic perovskite solar cell. Solar RRL 2, 1800139.

[58]

Ma, S. P., Lin, F. Y., Luo, Y., Zhu, L., Guo, X. Y., Yang, Y., Null, N., Null, N., Null, N., Null, N., et al. (2022). Formation mechanism of CsPbBr3 in multi-step spin coating process. Acta Phys. Sin. 71, 158101.

[59]

Zhang, J. H., Wang, Z. W., Mishra, A., Yu, M. L., Shasti, M., Tress, W., Kubicki, D. J., Avalos, C. E., Lu, H. Z., Liu, Y. H., et al. (2020). Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics. Joule 4, 507–508.

[60]

Wang, J. W., Liu, N., Liu, Z. Y., Liu, J. Y., Zhou, C. Y., Zhang, J., Huang, L. K., Hu, Z. Y., Zhu, Y. J., Liu, X. H. (2024). Versatile self-assembled monolayer enables high-performance inverted CsPbI3 perovskite solar cells. ACS Appl. Nano Mater. 7, 15267–15276.

[61]

Hu, Y. Q., Bai, F., Liu, X. B., Ji, Q. M., Miao, X. L., Qiu, T., Zhang, S. F. (2017). Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2, 2219–2227.

[62]

Cao, F. R., Tian, W., Wang, M., Cao, H. P., Li, L. (2019). Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv. Funct. Mater. 29, 1901280.

[63]

Wang, Y. S., Liu, J. L., Wang, J., Fan, Z. C. (2022). Phase stability and transformations in CsSnI3: Is anharmonicity negligible. J. Phys. Chem. C 126, 19470–19479.

[64]

Jokar, E., Chien, C. H., Tsai, C. M., Fathi, A., Diau, E. W. G. (2019). Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835.

[65]

Kumar, M. H., Dharani, S., Leong, W. L., Boix, P. P., Prabhakar, R. R., Baikie, T., Shi, C., Ding, H., Ramesh, R., Asta, M., et al. (2014). Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127.

[66]

Marshall, K. P., Walker, M., Walton, R. I., Hatton, R. A. (2016). Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy 1, 16178.

[67]

Sun, Q., Gu, A. J., Yu, H. X., Shen, Y., Wang, M. K. (2023). A single crystal derived precursor for improving the performance of CsSnI3 perovskite solar cells. J. Mater. Chem. A 11, 17292–17297.

[68]

Shao, S. Y., Dong, J. J., Duim, H., Ten Brink, G. H., Blake, G. R., Portale, G., Loi, M. A. (2019). Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cells. Nano Energy 60, 810–816.

[69]

Wang, N., Zhou, Y. Y., Ju, M. G., Pang, S. P. (2016). Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Adv. Energy Mater. 6, 1601130.

[70]

Sabba, D., Mulmudi, H. K., Prabhakar, R. R., Krishnamoorthy, T., Baikie, T., Boix, P. P., Mhaisalkar, S., Mathews, N. (2015). Impact of anionic Br substitution on open circuit voltage in lead free perovskite (CsSnI3- x Br x ) solar cells. J. Phys. Chem. C 119, 1763–1767.

[71]

Jaroenjittichai, A. P., Laosiritaworn, Y. (2018). Band alignment of cesium-based halide perovskites. Ceram. Int. 44, S161–S163.

[72]

Kumar, A., Pandey, N., Punetha, D., Saha, R., Chakrabarti, S. (2023). Enhancement in the structural and optical properties after incorporation of reduced graphene oxide (rGO) nanocomposite in pristine CsSnBr3 for solar cell application. ACS Appl. Electron. Mater. 5, 3144–3153.

[73]

Kholil, M. I., Bhuiyan, M. T. H., Rahman, M. A., Ali, M. S., Aftabuzzaman, M. (2021). Influence of molybdenum and technetium doping on visible light absorption, optical and electronic properties of lead-free perovskite CsSnBr3 for optoelectronic applications. RSC Adv. 11, 2405–2414.

[74]

Raoui, Y., Ez-Zahraouy, H., Ahmad, S., Kazim, S. (2021). Unravelling the theoretical window to fabricate high performance inorganic perovskite solar cells. Sustain. Energy Fuels 5, 219–229.

[75]

Duan, Q. Q., Ji, J. Y., Hong, X., Fu, Y. C., Wang, C. Y., Zhou, K., Liu, X. Q., Yang, H., Wang, Z. Y. (2020). Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Solar Energy 201, 555–560.

[76]

Li, X. R., Zhou, H. Y., Zhang, J. F., Sang, K. H., Fan, H., Lu, J. Y., Pang, Q., Chen, P. C., Zhou, L. Y., Li, L., et al. (2023). Trans-spatial structure additive passivated Sn (II) for high-efficiency CsSnI3 perovskite solar cells fabricated in humid air. Chem. Nanomat. 9, e202200481.

[77]

Xiao, Z. W., Zhou, Y. Y., Hosono, H., Kamiya, T. (2015). Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6. Phys. Chem. Chem. Phys. 17, 18900–18903.

[78]

Fang, D., Tan, Y. F., Ren, Y. X., Zheng, S. C., Xiong, F. M., Wang, A. C., Chang, K., Mi, B. X., Cao, D. P., Gao, Z. Q. (2023). Simple solution preparation of Cs2SnI6 films and their applications in solid-state DSSCs. ACS Appl. Mater. Interfaces 15, 32538–32551.

[79]

Xiao, Z. W., Zhou, Y. Y., Hosono, H., Kamiya, T., Padture, N. P. (2018). Bandgap optimization of perovskite semiconductors for photovoltaic applications. Chem. -A Eur. J. 24, 2305–2316.

[80]

Lee, B., Krenselewski, A., Baik, S. I., Seidman, D. N., Chang, R. P. H. (2017). Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6- x Br x , for potential solar cell applications. Sustain. Energy Fuels 1, 710–724.

[81]

Pujiarti, H., Hidayat, R., Wulandari, P. (2020). Effect of lead-free perovskite Cs2SnI6 addition in the structure of dye-sensitized solar cell. Key Eng. Mater. 860, 22–27.

[82]

Ullah, S., Ullah, S., Wang, J. M., Yang, S. E., Xia, T. Y., Guo, H. Z., Chen, Y. S. (2020). Investigation of air-stable Cs2SnI6 films prepared by the modified two-step process for lead-free perovskite solar cells. Semicond. Sci. Technol. 35, 125027.

[83]

Yousefzadeh, F., Ghanbari, M., Dawi, E. A., Salavati-Niasari, M. (2023). Cs2SnI6 perovskites nanostructures as excellent photocatalytic degradation of organic dye pollutants in water under visible light: synthesis and characterization. Arabian J. Chem. 16, 104904.

[84]

Murshed, R., Thornton, S., Walkons, C., Koh, J. J., Bansal, S. (2023). SnF2-doped Cs2SnI6 ordered vacancy double perovskite for photovoltaic applications. Solar RRL 7, 2300165.

[85]

Chauhan, V., Tripathi, D., Singh, P., Sharma, A., Khanna, M. K., Kumar, R., Bhatnagar, R., Kumar, T. (2023). Prospects for lead free perovskite for photovoltaic applications and biological impacts: challenges and opportunities. Inorg. Chem. Commun. 157, 111421.

[86]

Kumari, D., Jaiswal, N., Shukla, R., Punetha, D., Pandey, S. K., Pandey, S. K. (2023). Design and fabrication of all-inorganic transport materials-based Cs2SnI6 perovskite solar cells. J. Mater. Sci.: Mater. Electron. 34, 1792.

[87]

Ke, J. C. R., Lewis, D. J., Walton, A. S., Spencer, B. F., O'Brien, P., Thomas, A. G., Flavell, W. R. (2018). Ambient-air-stable inorganic Cs2SnI6 double perovskite thin films via aerosol-assisted chemical vapour deposition. J. Mater. Chem. A 6, 11205–11214.

[88]

Wang, G. Q., Cheng, L., Bi, J. Y., Chang, J. R., Meng, F. N. (2024). B-site doping with bismuth ion enhances the efficiency and stability of inorganic CsSnI3 perovskite solar cell. Mater. Lett. 354, 135394.

[89]

Li, W. Z., Li, J. W., Li, J. L., Fan, J. D., Mai, Y. H., Wang, L. D. (2016). Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 4, 17104–17110.

[90]

Ding, W., Bai, C., Ren, Y. X., Fang, D., Bai, J., Wen, J. L., Mi, B. X., Cao, D. P., Gao, Z. Q. (2024). Synergetic effects of recombination-blocking, band-Bending and gap-state manipulation by interfacial engineering in solid-state DSSCs comprising Cs2SnI6 electrolyte. Surf. Interfaces 48, 104246.

[91]

Ban, H. X., Nakajima, T., Liu, Z. R., Yu, H. X., Sun, Q., Dai, L. T., Shen, Y., Zhang, X. L., Zhu, J., Chen, P., et al. (2022). Over 8% efficient CsSnI3-based mesoporous perovskite solar cells enabled by two-step thermal annealing and surface cationic coordination dual treatment. J. Mater. Chem. A 10, 3642–3649.

[92]

Dai, L. T., Cabarrocas, P. R. I., Ban, H. X., Zhang, Z. G., Sun, Q., Li, X. J., Gu, A. J., Yang, W. P., Yu, H. X., Shen, Y., et al. (2023). Single-crystal nanowire cesium tin triiodide perovskite solar cell. Small 19, 2208062.

[93]

Qamar, S., Sultan, M., Akhter, Z., Ela, S. E. (2022). A facile one-step solution synthesis of Cs2SnI6- x Br x using less-toxic methanol solvent for application in dye-sensitized solar cells. Int. J. Energy Res. 46, 13441–13452.

[94]

Zhang, Z. G., Sun, Q., Nakajima, T., Ban, H. X., Liu, Z. R., Yu, H. X., Wang, Y., Xiao, Z. W., Shen, Y., Wang, M. K. (2022). Achieving efficient and stable inorganic CsSnI3 mesoporous perovskite solar cells via galvanic displacement reaction. J. Mater. Chem. A 10, 23204–23211.

[95]

Zhang, W. H., Cai, Y. T., Liu, H., Xia, Y., Cui, J. S., Shi, Y. Q., Chen, R., Shi, T. T., Wang, H. L. (2022). Organic-free and lead-free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12, 2202491.

[96]

Unger, E. L., Kegelmann, L., Suchan, K., Sörell, D., Korte, L., Albrecht, S. (2017). Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409.

[97]
Wang, Q. Q., Guo, K. Y., Gu, S. W., Huang, W., Peng, H., Wu, W. P., Ding, J. N. Electrical performance, loss analysis, and efficiency potential of industrial-type PERC, TOPCon, and SHJ solar cells: a comparative study. Prog. Photovoltaics in press.
[98]
Casey, J. P. (2024). Longi Unveils Hbc Cell With Record 27.3% conversion efficiency. https://www.pv-tech.org/longi-heterojunction-back-contact-cell-27-3-conversion-efficiency/ (accessed 5 July, 2024
[99]

Chen, B., Zheng, X. P., Bai, Y., Padture, N. P., Huang, J. S. (2017). Progress in tandem solar cells based on hybrid organic-inorganic perovskites. Adv. Energy Mater. 7, 1602400.

[100]

Leijtens, T., Bush, K. A., Prasanna, R., McGehee, M. D. (2018). Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838.

[101]

Yu, Z. S., Leilaeioun, M., Holman, Z. (2016). Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137.

[102]

Wang, Z. Y., Song, Z. N., Yan, Y. F., Liu, S. Z., Yang, D. (2019). Perovskite-a perfect top cell for tandem devices to break the S-Q limit. Adv. Sci. 6, 1801704.

[103]

Yu, Z. J., Fisher, K. C., Wheelwright, B. M., Angel, R. P., Holman, Z. C. (2015). PVMirror: a new concept for tandem solar cells and hybrid solar converters. IEEE J. Photovoltaics 5, 1791–1799.

[104]

Li, H., Zhang, W. (2020). Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950.

[105]

Hou, F. H., Han, C., Isabella, O., Yan, L. L., Shi, B., Chen, J. F., An, S. C., Zhou, Z. X., Huang, W., Ren, H. Z., et al. (2019). Inverted pyramidally-textured PDMS antireflective foils for perovskite/silicon tandem solar cells with flat top cell. Nano Energy 56, 234–240.

[106]

Jošt, M., Köhnen, E., Morales-Vilches, A. B., Lipovšek, B., Jäger, K., Macco, B., Al-Ashouri, A., Krč, J., Korte, L., Rech, B., et al. (2018). Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ. Sci. 11, 3511–3523.

[107]

Zheng, J. H., Mehrvarz, H., Liao, C., Bing, J. M., Cui, X., Li, Y., Gonçales, V. R., Lau, C. F. J., Lee, D. S., Li, Y., et al. (2019). Large-area 23%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced UV stability using down-shifting material. ACS Energy Lett. 4, 2623–2631.

[108]

Sahli, F., Werner, J., Kamino, B. A., Bräuninger, M., Monnard, R., Paviet-Salomon, B., Barraud, L., Ding, L., Diaz Leon, J. J., Sacchetto, D., et al. (2018). Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826.

[109]
Tockhorn, P., Sutter, J., Cruz, A., Wagner, P., Jäger, K., Yoo, D., Lang, F., Grischek, M., Li, B., Al-Ashouri, A., et al. (2022). Nano-optical designs enhance monolithic perovskite/silicon tandem solar cells toward 29.8% efficiency. https://scholar.google.es/citations?view_op=view_citation&hl=th&user=slgVcEMAAAAJ&citation_for_view=slgVcEMAAAAJ:W7OEmFMy1HYC, 2022 (accessed 5 July 2024).
[110]

Isikgor, F. H., Furlan, F., Liu, J., Ugur, E., Eswaran, M. K., Subbiah, A. S., Yengel, E., De Bastiani, M., Harrison, G. T., Zhumagali, S., et al. (2021). Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586.

[111]

Roß, M., Severin, S., Stutz, M. B., Wagner, P., Köbler, H., Favin-Lévêque, M., Al-ashouri, A., Korb, P., Tockhorn, P., Abate, A., et al. (2021). Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460.

[112]

Tockhorn, P., Sutter, J., Cruz, A., Wagner, P., Jäger, K., Yoo, D., Lang, F., Grischek, M., Li, B. R., Li, J. Z., et al. (2022). Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nat. Nanotechnol. 17, 1214–1221.

[113]

Morales-Masis, M., De Wolf, S., Woods-Robinson, R., Ager, J. W., Ballif, C. (2017). Transparent electrodes for efficient optoelectronics. Adv. Electron. Mater. 3, 1600529.

[114]

Aydin, E., De Bastiani, M., Yang, X. B., Sajjad, M. (2019). Zr-doped indium oxide (IZRO) transparent electrodes for perovskite-based tandem solar cells. Adv. Funct. Mater. 29, 1901741.

[115]

Jiang, Y., Feurer, T., Carron, R., Sevilla, G. T., Moser, T., Pisoni, S., Erni, R., Rossell, M. D., Ochoa, M., Hertwig, R., et al. (2020). High-mobility In2O3:H electrodes for four-terminal perovskite/CuInSe2 tandem solar cells. ACS Nano 14, 7502–7512.

[116]

Jošt, M., Kegelmann, L., Korte, L., Albrecht, S. (2020). Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102.

[117]

Chauhan, S., Singh, R. (2023). Investigation of 2T Pb-free wide bandgap perovskite/c-Si tandem device through simulation by SCAPS-1D. Sādhanā 48, 40.

[118]

Werner, J., Weng, C. H., Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., Niesen, B., Ballif, C. (2016). Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Letters 7, 161–166.

[119]

Al-Ashouri, A., Köhnen, E., Li, B. R., Magomedov, A., Hempel, H., Caprioglio, P., Márquez, J. A., Morales Vilches, A. B., Kasparavicius, E., Smith, J. A., et al. (2020). Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309.

[120]

Mishima, R., Hino, M., Kanematsu, M., Kishimoto, K., Ishibashi, H., Konishi, K., Okamoto, S., Irie, T., Fujimoto, T., Yoshida, W., et al. (2022). 28.3% efficient perovskite-silicon tandem solar cells with mixed self-assembled monolayers. Appl. Phys. Express 15, 076503.

[121]

Wu, B., Ning, W. H., Xu, Q. A., Manjappa, M., Feng, M. J., Ye, S. Y., Fu, J. H., Lie, S., Yin, T. T., Wang, F., et al. (2021). Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Sci. Adv. 7, eabd3160.

[122]

Jung, H., Kim, G., Jang, G. S., Lim, J., Kim, M., Moon, C. S., Hao, X. J., Jeon, N. J., Yun, J. S., Park, H. H., et al. (2021). Transparent electrodes with enhanced infrared transmittance for semitransparent and four-terminal tandem perovskite solar cells. ACS Appl. Mater. Interfaces 13, 30497–30503.

[123]
Uzum, A., Kanda, H., Ito, S. (2015). Perovskite/crystalline silicon tandem solar cells fabricated by non-vacuum-process. In Proceedings of the 42nd IEEE Photovoltaic Specialist Conference (PVSC). Beijing, p 1–4.
[124]
Zhang, M. R., Zhu, Z. W., Yang, X. Q., Yu, T. X., Yu, X. Q., Lu, D., Li, S. F., Zhou, D. Y., Yang, H. (2023). Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30% (in Chinese). Acta Phys. Sin. 72, 058801.
[125]

Mailoa, J. P., Bailie, C. D., Johlin, E. C., Hoke, E. T., Akey, A. J., Nguyen, W. H., McGehee, M. D., Buonassisi, T. (2015). A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105.

[126]

Sahli, F., Kamino, B. A., Werner, J., Bräuninger, M., Paviet-Salomon, B., Barraud, L., Monnard, R., Seif, J. P., Tomasi, A., Jeangros, Q., et al. (2018). Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8, 1701609.

[127]
Rolland, A., Pedesseau, L., Huang, Y., Wang, S., Sapori, D., Cornet, C., Durand, O., Even, J., Kepenekian, M., Katan, C. (2017). Computational design of high performance hybrid perovskite on silicon 2-T tandem solar cells based on a tunnel junction. In Proceedings of the 2017 International Conference on Numerical Simulation of Optoelectronic Devices. Copenhagen, Denmark, p 67–68.
[128]

Chen, B., Yu, Z. S., Liu, K., Zheng, X. P., Liu, Y., Shi, J. W., Spronk, D., Rudd, P. N., Holman, Z., Huang, J. S. (2019). Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3, 177–190.

[129]

Xu, J. X., Boyd, C. C., Yu, Z. J., Palmstrom, A. F., Witter, D. J., Larson, B. W., France, R. M., Werner, J., Harvey, S. P., Wolf, E. J., et al. (2020). Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104.

[130]

Qiu, Z. W., Xu, Z. Q., Li, N. X., Zhou, N., Chen, Y. H., Wan, X. X., Liu, J. L., Li, N., Hao, X. T., Bi, P. Q., et al. (2018). Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber. Nano Energy 53, 798–807.

[131]

Zhu, S. J., Hou, F. H., Huang, W., Yao, X., Shi, B., Ren, Q. S., Chen, J. F., Yan, L. L., An, S. C., Zhou, Z. X., et al. (2018). Solvent engineering to balance light absorbance and transmittance in perovskite for tandem solar cells. Solar RRL 2, 1800176.

[132]

Kim, C. U., Yu, J. C., Jung, E. D., Choi, I. Y., Park, W., Lee, H., Kim, I., Lee, D. K., Hong, K. K., Song, M. H., et al. (2019). Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells. Nano Energy 60, 213–221.

[133]

Islam, M. T., Jani, M. R., Islam, A. F., Shorowordi, K. M., Chowdhury, S., Nishat, S. S., Ahmed, S. (2021). Investigation of CsSn0.5Ge0.5I3-on-Si tandem solar device utilizing SCAPS simulation. IEEE Trans. Electron Devices 68, 618–625.

[134]

Azadinia, M., Ameri, M., Ghahrizjani, R. T., Fathollahi, M. (2021). Maximizing the performance of single and multijunction MA and lead-free perovskite solar cell. Mater. Today Energy 20, 100647.

[135]

Jayan, K. D., Laref, A. (2023). High-efficiency Cs-based perovskite-silicon tandem solar cells-a modeling study. Phys. Status Solidi A- Appl. Mater. Sci. 220, 2200622.

[136]

Hossain, M. J., Hossain, M. (2023). Over 32% efficient all-inorganic two-terminal CsPbI2Br/Si tandem solar cells: a numerical investigation. Energy Technol. 11, 2201297.

[137]

Wang, S. L., Wang, P. Y., Chen, B. B., Li, R. J., Ren, N. Y., Li, Y. C., Shi. B., Huang, Q., Zhao, Y., Grätzel, M., et al. (2022). Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%. eScience 2, 339–346.

[138]

Wang, S. L., Wang, P. Y., Shi, B., Sun, C., Sun, H. R., Qi, S. S., Huang, Q., Xu, S. Z., Zhao, Y., Zhang, X. D. (2023). Inorganic perovskite surface reconfiguration for stable inverted solar cells with 20.38% efficiency and its application in tandem devices. Adv. Mater. 35, 2300581.

Energy Materials and Devices
Article number: 9370045
Cite this article:
Wu H, Sun Z, Li H, et al. Review of all-inorganic perovskites and their tandem solar cells with crystalline silicon. Energy Materials and Devices, 2024, 2(3): 9370045. https://doi.org/10.26599/EMD.2024.9370045

1588

Views

512

Downloads

0

Crossref

Altmetrics

Received: 15 July 2024
Revised: 07 September 2024
Accepted: 19 September 2024
Published: 30 September 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return