PDF (5.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Effect of vinylene carbonate additive in polyacrylate-based polymer electrolytes for high-voltage lithium-metal batteries

Lulu RenPeichao Zou()Lei WangYaqi JingHuolin L. Xin()
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Solid polymer electrolytes (SPEs) have attracted considerable attention for solid-state lithium-metal batteries (LMBs) with high energy density and enhanced safety for future applications. In this study, an SPE was developed based on a poly(ethyl acrylate) (PEA) polymer matrix with the vinylene carbonate (VC) additive (defined as PEA-VC) for high-voltage solid-state LMBs. Results show that introducing the VC additive into the PEA-based SPE leads to high lithium-ion conductivity (1.57 mS/cm at 22°C), a high lithium-ion transference number (0.73), and a wide electrochemical stability window (up to 4.9 V vs. Li/Li+). The remarkable compatibility of the PEA-VC SPE with lithium metal anodes and high-voltage cathodes was demonstrated in Li//Li symmetric cells (800 h lifetime at a current density of 0.1 mA/cm2 at 22°C) and Li//LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells (with a capacity retention of 77.8% after 100 cycles at 0.2C). The improved stability is attributed to the introduction of the VC additive, which helps form a robust cathode–electrolyte interphase, effectively suppressing parasitic interface side reactions. Overall, this study highlights the role of VC additives in high-voltage and solid-state LMBs, offering a general yet effective approach for addressing the interfacial instability issue through an additive-engineering strategy.

Electronic Supplementary Material

Download File(s)
EMD20240049_ESM.pdf (445 KB)

References

[1]

Xu, B. Q., Zhai, H. W., Liao, X. B., Qie, B. Y., Mandal, J., Gong, T. Y., Tan, L. Y., Yang, X. J., Sun, K. R., Cheng, Q., et al. (2019). Porous insulating matrix for lithium metal anode with long cycling stability and high power. Energy Storage Mater. 17, 31–37.

[2]

Whittingham, M. S. (2004). Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302.

[3]

Bachman, J. C., Muy, S., Grimaud, A., Chang, H. H., Pour, N., Lux, S. F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., et al. (2016). Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162.

[4]

Kang, K., Meng, Y. S., Breger, J., Grey, C. P., Ceder, G. (2006). Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980.

[5]

Albertus, P., Babinec, S., Litzelman, S., Newman, A. (2018). Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21.

[6]

Zou, P. C., Sui, Y. M., Zhan, H. C., Wang, C. Y., Xin, H. L., Cheng, H. M., Kang, F. Y., Yang, C. (2021). Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 121, 5986–6056.

[7]

Li, Q. J., Wu, W. Y., Li, Y., Ren, H. X., Wu, C., Bai, Y. (2023). Enhanced safety of sulfone-based electrolytes for lithium-ion batteries: broadening electrochemical window and enhancing thermal stability. Energy Mater. Devices 1, 9370022.

[8]

Zeng, Z. Q., Chen, X., Sun, M. J., Jiang, Z. P., Hu, W., Yu, C., Cheng, S. J., Xie, J. (2021). Nanophase-separated, elastic epoxy composite thin film as an electrolyte for stable lithium metal batteries. Nano Lett. 21, 3611–3618.

[9]

Xue, C. J., Guan, S. D., Hu, B. K., Wang, X. Z., Xin, C. Z., Liu, S. J., Yu, J. Y., Wen, K. H., Li, L. L., Nan, C. W. (2022). Significantly improved interface between PVDF-based polymer electrolyte and lithium metal via thermal-electrochemical treatment. Energy Storage Mater. 46, 452–460.

[10]

Wang, Q. S., Ping, P., Zhao, X. J., Chu, G. Q., Sun, J. H., Chen, C. H. (2012). Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224.

[11]

Henriksen, M., Vaagsaether, K., Lundberg, J., Forseth, S., Bjerketvedt, D. (2019). Explosion characteristics for Li-ion battery electrolytes at elevated temperatures. J. Hazard. Mater. 371, 1–7.

[12]

Kong, L. X., Li, C., Jiang, J. C., Pecht, M. G. (2018). Li-ion battery fire hazards and safety strategies. Energies 11, 2191.

[13]

Sun, M. J., Zeng, Z. Q., Zhong, W., Han, Z. L., Peng, L. F., Yu, C., Cheng, S. J., Xie, J. (2022). In situ prepared “polymer-in-salt” electrolytes enabling high-voltage lithium metal batteries. J. Mater. Chem. A 10, 11732–11741.

[14]

Li, Z. C., Liu, Q., Deng, Y. R., Zhou, M. M., Tang, W. H., Dong, H. Y., Zhao, W. H., Liu, R. P. (2023). In situ cross-linked plastic crystal electrolytes toward superior lithium metal batteries. Mater. Today Energy 31, 101198.

[15]

Li, Z. C., Li, T. Y., Deng, Y. R., Tang, W. H., Wang, X. D., Yang, J. L., Liu, Q., Zhang, L., Wang, Q., Liu, R. P. (2022). 3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries. Rare Met. 41, 2834–2843.

[16]

Sun, M. J., Zeng, Z. Q., Hu, W., Sheng, K. Y., Wang, Z. Y., Han, Z. L., Peng, L. F., Yu, C., Cheng, S. J., Fan, M. W., et al. (2022). Scalable fabrication of solid-state batteries through high-energy electronic beam. Chem. Eng. J. 431, 134323.

[17]

Wu, X., Liang, X. H., Zhang, X. F., Lan, L. X., Li, S., Gai, Q. X. (2021). Structural evolution of plasma sprayed amorphous Li4Ti5O12 electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery. J. Adv. Ceram. 10, 347–354.

[18]

Gao, L., Wu, N., Deng, N. P., Li, Z. C., Li, J. X., Che, Y., Cheng, B. W., Kang, W. M., Liu, R. P., Li, Y. T. (2023). Optimized CeO2 nanowires with rich surface oxygen vacancies enable fast Li‐ion conduction in composite polymer electrolytes. Energy Environ. Mater. 6, e12272.

[19]

Xie, Z. H., Zhou, Y., Ling, C. H., Zhu, X. L., Fang, Z., Fu, X. L., Yan, W. W., Yang, Y. (2022). “Series and parallel” design of ether linkage and imidazolium cation synergistically regulated four-armed polymerized ionic liquid for all-solid-state polymer electrolyte. Chin. Chem. Lett. 33, 1407–1411.

[20]

Tong, R. A., Luo, H. L., Chen, L. H., Zhang, J. X., Shao, G., Wang, H. L., Wang, C. A. (2022). Constructing the lithium polymeric salt interfacial phase in composite solid-state electrolytes for enhancing cycle performance of lithium metal batteries. Chem. Eng. J. 442, 136154.

[21]

Chen, L. H., Zhang, J., Tong, R. A., Zhang, J. X., Wang, H. L., Shao, G., Wang, C. A. (2022). Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small 18, 2106142.

[22]

Lin, R. Q., He, Y. B., Wang, C. Y., Zou, P. C., Hu, E. Y., Yang, X. Q., Xu, K., Xin, H. L. (2022). Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Nat. Nanotechnol. 17, 768–776.

[23]

Feng, J. N., Wang, L., Chen, Y. J., Wang, P. Y., Zhang, H. R., He, X. M. (2021). PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8, 2.

[24]

Bandyopadhyay, S., Gupta, A., Srivastava, R., Nandan, B. (2022). Bio-inspired design of electrospun poly (acrylonitrile) and novel ionene based nanofibrous mats as highly flexible solid state polymer electrolyte for lithium batteries. Chem. Eng. J. 440, 135926.

[25]

Jia, M. Y., Bi, Z. J., Guo, X. X. (2022). Ionic–electronic dual-conductive polymer modified LiCoO2 cathodes for solid lithium batteries. Chem. Commun. 58, 8638–8641.

[26]

Aidoud, D., Etiemble, A., Guy-Bouyssou, D., Maire, E., Le Bideau, J., Guyomard, D., Lestriez, B. (2016). Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes. J. Power Sources 330, 92–103.

[27]

Dai, C., Stadler, F. J., Li, Z. M., Huang, Y. F. (2023). E-beam irradiation of poly (vinylidene fluoride-trifluoroethylene) induces high dielectric constant and all- trans conformation for highly ionic conductive solid-state electrolytes. Energy Mater. Devices 1, 9370016.

[28]

Boaretto, N., Meabe, L., Martinez-Ibañez, M., Armand, M., Zhang, H. (2020). Review-polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid. J. Electrochem. Soc. 167, 070524.

[29]

Gunathilaka, A. M. I. E., Bandara, L. R. A. K., Arof, A. K., Careem, M. A., Seneviratne, V. A. (2017). Electrical and structural studies of a LiBOB-based gel polymer electrolyte. Ionics 23, 2669–2675.

[30]

Stephan, A. M. (2006). Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42.

[31]

Xue, Z. G., He, D., Xie, X. L. (2015). Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253.

[32]

Liao, C., Sun, X. G., Dai, S. (2013). Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications. Electrochim. Acta 87, 889–894.

[33]

Gao, J., Shao, Q. J., Chen, J. (2020). Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery. J. Energy Chem. 46, 237–247.

[34]

Li, C. C., Qin, B. S., Zhang, Y. F., Varzi, A., Passerini, S., Wang, J. Y., Dong, J. M., Zeng, D. L., Liu, Z. H., Cheng, H. S. (2019). Single‐ion conducting electrolyte based on electrospun nanofibers for high‐performance lithium batteries. Adv. Energy Mater. 9, 1803422.

[35]

Deng, K. R., Qin, J. X., Wang, S. J., Ren, S., Han, D. M., Xiao, M., Meng, Y. Z. (2018). Effective suppression of lithium dendrite growth using a flexible single‐ion conducting polymer electrolyte. Small 14, 1801420.

[36]

Yuan, B. H., Zhao, B., Wang, Q., Bai, Y. G., Cheng, Z. W., Cong, Z., Lu, Y. F., Ji, F. D., Shen, F., Wang, P. F., et al. (2022). A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries. Energy Storage Mater. 47, 288–296.

[37]

Hu, P., Chai, J. C., Duan, Y. L., Liu, Z. H., Cui, G. L., Chen, L. Q. (2016). Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 4, 10070–10083.

[38]

Wang, C., Zhang, H. R., Dong, S. M., Hu, Z. L., Hu, R. X., Guo, Z. Y., Wang, T., Cui, G. L., Chen, L. Q. (2020). High polymerization conversion and stable high-voltage chemistry underpinning an in situ formed solid electrolyte. Chem. Mater. 32, 9167–9175.

[39]

Xiong, D. J., Burns, J. C., Smith, A. J., Sinha, N., Dahn, J. R. (2011). A high precision study of the effect of vinylene carbonate (VC) additive in Li/graphite cells. J. Electrochem. Soc. 158, A1431.

[40]

Ota, H., Shima, K., Ue, M., Yamaki, J. I. (2004). Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565–572.

[41]

Wang, Z. Y., Wang, Y. M., Zhai, P., Poldorn, P., Jungsuttiwong, S., Yuan, S. (2022). A cation-dipole-reinforced elastic polymer electrolyte enabling long-cycling quasi-solid-state lithium metal batteries. J. Energy Chem. 75, 340–348.

[42]

Zhang, S. J., Lu, Y., He, K. W., Meng, X. H., Que, L. F., Wang, Z. B. (2022). Effect of UV light polymerization time on the properties of plastic crystal composite polyacrylate polymer electrolyte for all solid‐state lithium‐ion batteries. J. Appl. Polym. Sci. 139, 52001.

[43]

Dong, T. T., Zhang, J. J., Xu, G. J., Chai, J. C., Du, H. P., Wang, L. L., Wen, H. J., Zang, X., Du, A. B., Jia, Q. M., et al. (2018). A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203.

[44]

Ma, J., Liu, Z. L., Chen, B. B., Wang, L. L., Yue, L. P., Liu, H. S., Zhang, J. J., Liu, Z. H., Cui, G. L. (2017). A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J. Electrochem. Soc. 164, A3454–A3461.

[45]

Chen, R. J., Liu, F., Chen, Y., Ye, Y. S., Huang, Y. X., Wu, F., Li, L. (2016). An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 306, 70–77.

[46]

Haregewoin, A. M., Wotango, A. S., Hwang, B. J. (2016). Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci. 9, 1955–1988.

[47]

Cha, J., Han, J. G., Hwang, J., Cho, J., Choi, N. S. (2017). Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro (oxalato) borate, in high-voltage lithium-ion batteries. J. Power Sources 357, 97–106.

[48]

Semushkina, G. I., Fedoseeva, Y. V., Makarova, A. A., Smirnov, D. A., Asanov, I. P., Pinakov, D. V., Chekhova, G. N., Okotrub, A. V., Bulusheva, L. G. (2022). Photolysis of fluorinated graphites with embedded acetonitrile using a white-beam synchrotron radiation. Nanomaterials 12, 231.

Energy Materials and Devices
Article number: 9370049
Cite this article:
Ren L, Zou P, Wang L, et al. Effect of vinylene carbonate additive in polyacrylate-based polymer electrolytes for high-voltage lithium-metal batteries. Energy Materials and Devices, 2024, 2(4): 9370049. https://doi.org/10.26599/EMD.2024.9370049
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return