AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Advanced high-voltage and super-stable sodium–zinc hybrid ion batteries enabled by a hydrogel electrolyte

Debin Kong1( )Xinru Wei1Jinshu Yue2Changzhi Ji2Jianhang Yang3Guanzhong Ma1Xia Hu1Wenting Feng4Changming Mao3Zhongtao Li2Linjie Zhi1,4( )
College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao 266580, China
Show Author Information

Graphical Abstract

Abstract

Aqueous secondary batteries are promising candidates for next-generation large-scale energy storage systems owing to their excellent safety and cost-effectiveness. However, their commercialization faces considerable challenges owing to a limited electrochemical stability window and lower energy density. In this study, we present a rationally designed hydrogel electrolyte, featuring a distinctive polymer network and reduced free water content, created using a UV-curing method. This innovation results in an impressive ionic conductivity of 43 mS cm−1, high mechanical strength and an enhanced electrochemical stability window of up to 2.5 V (vs. Zn/Zn2+). The hybrid electrolyte demonstrates impressive viability and versatility, enabling compatibility with various cathode materials for use in both aqueous Na–Zn hybrid batteries and Zn-ion batteries. Notably, when paired with a Prussian blue cathode, the assembled hybrid batteries show remarkable cyclability, enduring over 6000 cycles with a minimal capacity decay of only 0.0096% per cycle at a high current density of 25 C. Additionally, the Zn||Na2MnFe(CN)6 full battery using the synthesized hydrogel electrolyte achieves a high energy density of approximately 220 Wh kg−1 and outstanding rate performance reaching up to 5 C. This research provides important insights for designing aqueous hybrid electrolytes that combine both high ionic conductivity and an expansive electrochemical stability window.

Electronic Supplementary Material

Download File(s)
EMD20240050_ESM.pdf (840.3 KB)

References

[1]

Choi, D., Shamim, N., Crawford, A., Huang, Q., Vartanian, C. K., Viswanathan, V. V., Paiss, M. D., Alam, M. J. E., Reed, D. M., Sprenkle, V. L. (2021). Li-ion battery technology for grid application. J. Power Sources 511, 230419.

[2]

Zhou, G. M., Li, F., Cheng, H. M. (2014). Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338.

[3]

Hu, X. S., Deng, X. C., Wang, F., Deng, Z. W., Lin, X. K., Teodorescu, R., Pecht, M. G. (2022). A review of second-life lithium-ion batteries for stationary energy storage applications. Proc. IEEE 110, 735–753.

[4]

Chombo, P. V., Laoonual, Y. (2020). A review of safety strategies of a Li-ion battery. J. Power Sources 478, 228649.

[5]

Shin, J., Choi, J. W. (2020). Opportunities and reality of aqueous rechargeable batteries. Adv. Energy Mater. 10, 2001386.

[6]

Li, C., Jin, S., Archer, L. A., Nazar, L. F. (2022). Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 6, 1733–1738.

[7]

Liu, X. Y., Liu, Y. B., Zhang, Q. X., Zhou, S. Z., Li, X. Y., Yi, B., Liu, Y. M., Liu, X. Z., Ding, Y. (2024). Integrating aperiodic 3D porous electrodes into 3D batteries through spray-deposited polymer electrolytes. Adv. Energy Mater. 14, 2401330.

[8]

Pan, H. L., Shao, Y. Y., Yan, P. F., Cheng, Y. W., Han, K. S., Nie, Z. M., Wang, C. M., Yang, J. H., Li, X. L., Bhattacharya, P., et al. (2016). Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039.

[9]

Lin, X. D., Zhou, G. D., Liu, J. P., Yu, J., Effat, M. B., Wu, J. X., Ciucci, F. (2020). Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Adv. Energy Mater. 10, 2001235.

[10]

Hoang, T. K. A., Doan, T. N. L., Cho, J. H., Su, J. Y. J., Lee, C., Lu, C. Y., Chen, P. (2017). Corrigendum: sustainable gel electrolyte containing pyrazole as corrosion inhibitor and dendrite suppressor for aqueous Zn/LiMn2O4 battery. ChemSusChem 10, 3160.

[11]

Wang, F., Borodin, O., Gao, T., Fan, X. L., Sun, W., Han, F. D., Faraone, A., Dura, J. A., Xu, K., Wang, C. S. (2018). Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549.

[12]

Liu, T. F., Zhang, Y. P., Jiang, Z. G., Zeng, X. Q., Ji, J. P., Li, Z. H., Gao, X. H., Sun, M. H., Lin, M., Zheng J, C., et al. (2019). Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 12, 1512–1533.

[13]

Liu, R., Liang, Z. T., Gong, Z. L., Yang, Y. (2019). Research progress in multielectron reactions in polyanionic materials for sodium-ion batteries. Small Methods 3, 1800221.

[14]

Qian, J. F., Wu, C., Cao, Y. L., Ma, Z. F., Huang, Y. H., Ai, X. P., Yang, H. X. (2018). Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619.

[15]

Suo, L. M., Borodin, O., Wang, Y. S., Rong, X. H., Sun, W., Fan, X., Xu, S. Y., Schroeder, M. A., Cresce, A. V., Wang, F., et al. (2017). “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189.

[16]

Wang, Z. F., Li, H. F., Tang, Z. J., Liu, Z. X., Ruan, Z. H., Ma, L. T., Yang, Q., Wang, D. H., Zhi, C. Y. (2018). Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560.

[17]

Li, X. L., Xu, Z. B., Qian, Y. T., Hou, Z. G. (2022). In-situ regulated competitive proton intercalation and deposition/dissolution reaction of MnO2 for high-performance flexible zinc-manganese batteries. Energy Storage Mater. 53, 72–78.

[18]

Leng, K. T., Li, G. J., Guo, J. J., Zhang, X. Y., Wang, A. X., Liu, X. J., Luo, J. Y. (2020). A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 30, 2001317.

[19]

Wei, J. J., Zhou, J., Su, S. S., Jiang, J. H., Feng, J., Wang, Q. G. (2018). Water-deactivated polyelectrolyte hydrogel electrolytes for flexible high-voltage supercapacitors. ChemSusChem 11, 3410–3415.

[20]

Jeon, O., Shin, J. Y., Marks, R., Hopkins, M., Kim, T. H., Park, H. H., Alsberg, E. (2017). Highly elastic and tough interpenetrating polymer network-structured hybrid hydrogels for cyclic mechanical loading-enhanced tissue engineering. Chem. Mater. 29, 8425–8432.

[21]
Tian, H., Yao, M., Guo, Y., Wang, Z. Y., Xu, D. H., Pan, W., Zhang, Q. Y. (2024). Hydrogel electrolyte with regulated water activity and hydrogen bond network for ultra-stable zinc electrode. Adv. Energy Mater. in press.
[22]

Dong, L. B., Li, Y., Wang, L., Xu, S. S., Hou, F. (2014). Effect of frozen conditions on dispersion morphologies of carbon nanotubes and electrical conductivity of carbon fiber/epoxy composites. Mater. Lett. 130, 180–183.

[23]

Mo, F. N., Chen, Z., Liang, G. J., Wang, D. H., Zhao, Y. W., Li, H. F., Dong, B. B., Zhi, C. Y. (2020). Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10, 2000035.

[24]

Lu, X. Y., Si, Y., Zhang, S. C., Yu, J. Y., Ding, B. (2021). In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv. Funct. Mater. 31, 2103117.

[25]

Yang, H. J., Qiao, Y., Chang, Z., Deng, H., He, P., Zhou, H. S. (2020). A metal–organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc–iodide batteries. Adv. Mater. 32, 2004240.

[26]

Yang, Y. Q., Liang, S. Q., Lu, B. G., Zhou, J. (2022). Eutectic electrolyte based on N-methylacetamide for highly reversible zinc–iodine battery. Energy Environ. Sci. 15, 1192–1200.

[27]
Zhao, Y. F., Chen, Z. Y., Gao, X., Dong, H. B., Zhao, X. Y., He, G. J., Yang, H. (2024). In-situ self-respiratory solid-to-hydrogel electrolyte interface evoked well-distributed deposition on zinc anode for highly reversible zinc-ion batteries. Angew. Chem. Int. Ed. in press.
[28]

Huang, Y., Zhang, J. Y., Liu, J. W., Li, Z. X., Jin, S. Y., Li, Z. G., Zhang, S. D., Zhou, H. (2019). Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 14, 100349.

[29]

Huang, J. Q., Chi, X. W., Du, Y. X., Qiu, Q. L., Liu, Y. (2021). Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries. ACS Appl. Mater. Interfaces 13, 4008–4016.

[30]

Li, H. F., Han, C. P., Huang, Y., Huang, Y., Zhu, M, S., Pei, Z. X., Xue, Q., Wang, Z. F., Liu, Z. X., Tang, Z. J., et al. (2018). An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951.

[31]

Li, Y., Peng, X. Y., Li, X., lDuan, H., Xie, S. Y., Dong, L. B., Kang, F. Y. (2023). Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35, 2300019.

[32]

Tikekar, M. D., Choudhury, S., Tu, Z. Y., Archer, L. A. (2016). Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114.

[33]

Chen, M. F., Chen, J. Z., Zhou, W. J., Han, X., Yao, Y. G., Wong, C. P. (2021). Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33, 2007559.

[34]

Wan, F., Zhang, L. L., Dai, X., J., Han, X., Yao, Y. G., Wong, C. P. (2018). Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656.

[35]

You, Y., Wu, X. L., Yin, Y. X., Guo, Y. G. (2014). High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647.

[36]

Li, L., Nie, P., Chen, Y. B., Wang, J. (2019). Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries. J. Mater. Chem. A 7, 12134–12144.

[37]

Liu, C. L., Sun, Y. P., Nie, J. B., Dong, D., Xie, J., Zhao, X. B. (2020). Stable cycling of a Prussian blue-based Na/Zn hybrid battery in aqueous electrolyte with a wide electrochemical window. New J. Chem. 44, 4639–4646.

[38]

Ao, H. S., Zhu, W. D., Liu, M. K., Zhang, W. Q., Hou, Z. G., Wu, X. J., Zhu, Y. C., Qian, Y. T. (2021). High-voltage and super-stable aqueous sodium–zinc hybrid ion batteries enabled by double solvation structures in concentrated electrolyte. Small Methods 5, 2100418.

[39]

Ma, F. X., Yuan, X. H., Xu, T., Zhou, S. Y., Xiong, X. S., Zhou, Q., Yu, N. F., Ye, J. L., Wu, Y. P., Van Ree, T. (2020). A high-quality monoclinic nickel hexacyanoferrate for aqueous zinc–sodium hybrid batteries. Energy Fuels 34, 13104–13110.

[40]

Li, W., Wang, K. L., Zhou, M., Zhan, H. C., Cheng, S. J., Jiang, K. (2018). Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10, 22059–22066.

[41]

Lu, K., Song, B., Zhang, J. T., Ma, H. Y. (2016). A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. J. Power Sources 321, 257–263.

[42]

Zhou, Y., Zhang, Z. S., Zhao, Y., Liu, J. F., Lam, K. H., Zheng, X. Y., Lou, H. T., Hou, X. H. (2021). Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and Na3MnTi(PO4)3 cathode. Chem. Eng. J. 425, 130459.

[43]

Zhao, X. L., Yan, J. W., Hong, H., Zhao, Y. W., Li, Q., Tang, Y. C., He, J. F., Wei, Z. Q., He, S. G., Hou, X. H., et al. (2022). Ligand-substitution chemistry enabling wide-voltage aqueous hybrid electrolyte for ultrafast-charging batteries. Adv. Energy Mater. 12, 2202478.

[44]

Wang, K. D., Li, H. H., Guo, G. L., Zheng, L. L., Passerini, S., Zhang, H. (2023). Enabling multi-electron reactions in NASICON positive electrodes for aqueous zinc-metal batteries. ACS Energy Lett. 8, 1671–1679.

[45]

Li, G. L., Yang, Z., Jiang, Y., Jin, C. H., Huang, W., Ding, X. L., Huang, Y. H. (2016). Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25, 211–217.

[46]

Wang, C. L., Sun, L. S., Li, M. X., Zhou, L., Cheng, Y., Ao, X., Zhang, X. Y., Wang, L. M., Tian, B. B., Fan, H. J. (2022). Aqueous Zn2+/Na+ dual-salt batteries with stable discharge voltage and high columbic efficiency by systematic electrolyte regulation. Sci. China Chem. 65, 399–407.

Energy Materials and Devices
Article number: 9370050
Cite this article:
Kong D, Wei X, Yue J, et al. Advanced high-voltage and super-stable sodium–zinc hybrid ion batteries enabled by a hydrogel electrolyte. Energy Materials and Devices, 2024, 2(4): 9370050. https://doi.org/10.26599/EMD.2024.9370050

563

Views

141

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 20 November 2024
Revised: 08 December 2024
Accepted: 10 December 2024
Published: 31 December 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return