AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In situ polymerized quasi-solid polymer electrolytes enabling void-free interfaces for room-temperature sodium–sulfur batteries

Jiafang HuangZhengguang SongJunxiong Wu( )Yuhui MiaoManxian LiDanjing LinKai ZhuXiaochuan ChenXiaoyan LiYuming Chen( )
Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences and College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350117, China

Jiafang Huang and Zhengguang Song contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Rechargeable room-temperature (RT) sodium–sulfur (Na–S) batteries hold great potential for large-scale energy storage owing to their high energy density and low cost. However, their practical application is hindered by challenges such as polysulfide shuttling and Na dendrite formation. In this study, a dual salt-based quasi-solid polymer electrolyte (DS–QSPE) was developed via in situ polymerization, achieving high ionic conductivity (4.8 × 10−4 S·cm−1 at 25 °C), a high sodium-ion transference number (0.73), and effective polysulfide confinement. Theoretical calculations and experimental results indicate that the enhanced Na-ion transport is attributed to the strengthened coordination of anions with the polydioxolane chain and the increased dissociation of sodium salts. Importantly, the DS–QSPE forms an interconnected network structure in the sulfurized polyacrylonitrile (SPAN) cathode. This provides abundant and seamless electrochemical reaction interfaces that facilitate efficient and uniform ion transport pathways. As a result, the Na||SPAN battery with DS–QSPE delivers a high capacity of approximately 327.4 mAh·g−1 (based on the mass of SPAN) after 200 cycles at 0.2 A·g−1, retaining 81.4% of its initial capacity. This performance considerably surpasses that of batteries using liquid electrolytes. This study offers a straightforward approach to addressing the interfacial challenges in solid-state Na–S batteries.

Electronic Supplementary Material

Download File(s)
EMD20240051_ESM.pdf (1.1 MB)

References

[1]

Yao, W. Q., Liao, K., Lai, T. X., Sul, H., Manthiram, A. (2024). Rechargeable metal-sulfur batteries: Key materials to mechanisms. Chem. Rev. 124, 4935–5118.

[2]

Wang, Y. X., Zhang, B. W., Lai, W. H., Xu, Y. F., Chou, S. L., Liu, H. K., Dou, S. X. (2017). Room-temperature sodium–sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829.

[3]

Zhang, S. P., Yao, Y., Yu, Y. (2021). Frontiers for room-temperature sodium–sulfur batteries. ACS Energy Lett. 6, 529–536.

[4]

Lei, Y. J., Liu, H. W., Yang, Z., Zhao, L. F., Lai, W. H., Chen, M. Z., Liu, H. K., Dou, S. X., Wang, Y. X. (2023). A review on the status and challenges of cathodes in room-temperature Na–S batteries. Adv. Funct. Mater. 33, 2212600.

[5]

Guo, D., Wang, J. A., Cui, Z. H., Shi, Z. X., Henkelman, G., Alshareef, H. N., Manthiram, A. (2024). Low-temperature sodium–sulfur batteries enabled by ionic liquid in localized high concentration electrolytes. Adv. Funct. Mater. 34, 2409494.

[6]

Yan, Z. C., Zhao, L. F., Wang, Y. X., Zhu, Z. Q., Chou, S. L. (2022). The future for room-temperature sodium–sulfur batteries: From persisting issues to promising solutions and practical applications. Adv. Funct. Mater. 32, 2205622.

[7]

Liu, C., Morimoto, N., Jiang, L., Kawahara, S., Noritomi, T., Yokoyama, H., Mayumi, K., Ito, K. (2021). Tough hydrogels with rapid self-reinforcement. Science 372, 1078–1081.

[8]

Yu, X. W., Manthiram, A. (2019). Sodium–sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte. Matter 1, 439–451.

[9]

He, J. R., Bhargav, A., Su, L. S., Charalambous, H., Manthiram, A. (2023). Intercalation-type catalyst for non-aqueous room temperature sodium–sulfur batteries. Nat. Commun. 14, 6568.

[10]

Guo, Q. B., Li, S., Liu, X. J., Lu, H. C., Chang, X. Q., Zhang, H. S., Zhu, X. H., Xia, Q. Y., Yan, C. L., Xia, H. (2020). Ultrastable sodium–sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 7, 1903246.

[11]

Ma, L. B., Lv, Y. H., Wu, J. X., Chen, Y. M., Jin, Z. (2021). Recent advances in emerging non-lithium metal–sulfur batteries: a review. Adv. Energy Mater. 11, 2100770.

[12]

Ma, L. B., Chen, H. X., Wu, J. X., Lv, Y. H., Chen, X., Li, X. Y., Li, Q. J., Di, J., Chen, Y. M. (2022). Recent progress on zeolitic imidazolate frameworks and their derivatives in alkali metal–chalcogen batteries. Adv. Energy Mater. 12, 2103152.

[13]

Ren, Y. X., Lai, T. X., Manthiram, A. (2023). Reversible sodium–sulfur batteries enabled by a synergistic dual-additive design. ACS Energy Lett. 8, 2746–2752.

[14]
Wu, J. X., Li, X. Y., Chen, H. Y., Yuan, Z. W., Huang, J. F., Tong, L. J., Long, J., Li, M. X., Chen, X. C., Chen, Y. M. (2024). Regulating bottom-up sodium deposition with a triple-gradient scaffold for high-capacity and long-life sodium metal batteries. CCS Chem. in press.
[15]

Wu, J. X., Lin, C., Liang, Q. H., Zhou, G. D., Liu, J. P., Liang, G. M., Wang, M., Li, B. H., Hu, L., Ciucci, F. et al. (2022). Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat 4, e12288.

[16]
Chen, H. Y., Wu, J. X., Li, M. X., Zhao, J. Y., Li, Z. L., Wang, M. X., Li, X., Li, C. P., Chen, X. C., Li, X. Y. et al. (2024). Heterogeneous structure design for stable Li/Na metal batteries: progress and prospects. eScience in press.
[17]

Li, D. J., Gong, B. B., Cheng, X. L., Ling, F. X., Zhao, L. G., Yao, Y., Ma, M. Z., Jiang, Y., Shao, Y., Rui, X. H. et al. (2021). An efficient strategy toward multichambered carbon nanoboxes with multiple spatial confinement for advanced sodium–sulfur batteries. ACS Nano 15, 20607–20618.

[18]

Zhang, T., Zhang, L., Hou, Y. L. (2022). MXenes: synthesis strategies and lithium–sulfur battery applications. eScience 2, 164–182.

[19]
Dai, X. W., Wang, Z. R., Wang, X. L., Chun, J. Y., Wei, C. L., Tan, L. W., Feng, J. K. (2024). Mxene-based sodium–sulfur batteries: synthesis, applications and perspectives. Rare Met. in press.
[20]

Qin, X. Y., Wu, J. X., Xu, Z. L., Chong, W. G., Huang, J. Q., Liang, G. M., Li, B. H., Kang, F. Y., Kim, J. K. (2019). Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium–sulfur batteries. Carbon 141, 16–24.

[21]

Ma, L. B., Wu, J. X., Li, Y., Lv, Y. H., Li, B. H., Jin, Z. (2021). Rational design of carbon nanotube architectures for lithium–chalcogen batteries: advances and perspectives. Energy Storage Mater. 42, 723–752.

[22]

Kong, D. B., Lv, W., Liu, R. L., He, Y. B., Wu, D. C., Li, F., Fu, R. W., Yang, Q. H., Kang, F. Y. (2023). Superstructured carbon materials: design and energy applications. Energy Mater. Dev. 1, 9370017.

[23]

Li, Z., Wang, C. L., Ling, F. X., Wang, L. F., Bai, R. L., Shao, Y., Chen, Q. W., Yuan, H., Yu, Y., Tan, Y. Q. (2022). Room-temperature sodium–sulfur batteries: Rules for catalyst selection and electrode design. Adv. Mater. 34, 2204214.

[24]

Jiang, Y., Yu, Z. X., Zhou, X. F., Cheng, X. L., Huang, H. J., Liu, F. F., Yang, Y. X., He, S. N., Pan, H. G., Yang, H. et al. (2023). Single-atom vanadium catalyst boosting reaction kinetics of polysulfides in Na–S batteries. Adv. Mater. 35, 2208873.

[25]

Wang, N. N., Wang, Y. X., Bai, Z. C., Fang, Z. W., Zhang, X., Xu, Z. F., Ding, Y., Xu, X., Du, Y., Dou, S. X. et al. (2020). High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy Environ. Sci. 13, 562–570.

[26]

Chen, Y. P., Yao, Y., Zhao, W. T., Wang, L. F., Li, H. T., Zhang, J. W., Wang, B. J., Jia, Y., Zhang, R. G., Yu, Y. et al. (2023). Precise solid-phase synthesis of CoFe@FeO x nanoparticles for efficient polysulfide regulation in lithium/sodium–sulfur batteries. Nat. Commun. 14, 7487.

[27]

Ruan, J. F., Lei, Y. J., Fan, Y. M., Borras, M. C., Luo, Z. X., Yan, Z. C., Johannessen, B., Gu, Q. F., Konstantinov, K., Pang, W. K. et al. (2024). Linearly interlinked Fe-N x -Fe single atoms catalyze high-rate sodium–sulfur batteries. Adv. Mater. 36, 2312207.

[28]

Wu, J. X., Li, M. X., Ma, L. B., Li, X. Y., Chen, X. C., Long, J., Wang, Y. X., Li, X., Liu, J. P., Guo, Z. P. et al. (2024). Engineering densely packed ion-cluster electrolytes for wide-temperature lithium–sulfurized polyacrylonitrile batteries. ACS Nano 18, 32984–32994.

[29]

Wu, J. X., Liu, J. P., Lu, Z. H., Lin, K., Lyu, Y. Q., Li, B. H., Ciucci, F., Kim, J. K. (2019). Non-flammable electrolyte for dendrite-free sodium–sulfur battery. Energy Storage Mater. 23, 8–16.

[30]

Chen, W. J., Li, B. Q., Zhao, C. X., Zhao, M., Yuan, T. Q., Sun, R. C., Huang, J. Q., Zhang, Q. (2020). Electrolyte regulation towards stable lithium-metal anodes in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Ed. 59, 10732–10745.

[31]

Hwang, T. H., Jung, D. S., Kim, J. S., Kim, B. G., Choi, J. W. (2013). One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature. Nano Lett. 13, 4532–4538.

[32]

Pai, M. H., Lai, T. X., Manthiram, A. (2024). Sodium–sulfur cells with a sulfurized polyacrylonitrile cathode and a localized high concentration electrolyte with toluene as a nonfluorinated diluent. Adv. Funct. Mater. 34, 2407450.

[33]

Yue, J., Han, F. D., Fan, X. L., Zhu, X. Y., Ma, Z. H., Yang, J., Wang, C. S. (2017). High-performance all-inorganic solid-state sodium–sulfur battery. ACS Nano 11, 4885–4891.

[34]

Wan, H. L., Weng, W., Han, F. D., Cai, L. T., Wang, C. S., Yao, X. Y. (2020). Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium–sulfur battery. Nano Today 33, 100860.

[35]

Ji, T. T., Tu, Q. S., Zhao, Y., Wierzbicki, D., Plisson, V., Wang, Y., Wang, J. W., Burch, K. S., Yang, Y., Zhu, H. L. (2024). Three-step thermodynamic vs. two-step kinetics-limited sulfur reactions in all-solid-state sodium batteries. Energy Environ. Sci. 17, 9255–9267.

[36]

Zhou, D., Chen, Y., Li, B. H., Fan, H. B., Cheng, F. L., Shanmukaraj, D., Rojo, T., Armand, M., Wang, G. X. (2018). A stable quasi-solid-state sodium–sulfur battery. Angew. Chem. Int. Ed. 57, 10168–10172.

[37]

Xiang, J. W., Zhang, Y., Zhang, B., Yuan, L. X., Liu, X. T., Cheng, Z. X., Yang, Y., Zhang, X. X., Li, Z., Shen, Y. et al. (2021). A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ. Sci. 14, 3510–3521.

[38]

Murugan, S., Klostermann, S. V., Schützendübe, P., Richter, G., Kästner, J., Buchmeiser, M. R. (2022). Stable cycling of room-temperature sodium–sulfur batteries based on an in situ crosslinked gel polymer electrolyte. Adv. Funct. Mater. 32, 2201191.

[39]

Shi, T., Liao, Y. Q., Kong, J., Ji, H. J., Hou, T. Y., Huang, Z. L., Han, Y., Xu, H. H., Yuan, L. X., Huang, Y. H. (2024). Quasi-solid-state sulfur cathode with ultralean electrolyte via in situ polymerization. Energy Storage Mater. 72, 103744.

[40]
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25.
[41]

Doherty, B., Zhong, X., Gathiaka, S., Li, B., Acevedo, O. (2017). Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 13, 6131–6145.

[42]

Lu, T., Chen, F. X. (2012). Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592.

[43]

Hess, B., Bekker, H., Berendsen, H. J. C., Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. 3.0.CO;2-H">J. Comput. Chem. 18, 1463–1472.

[44]

Martínez, L., Andrade, R., Birgin, E. G., Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164.

[45]

Posch, H. A., Hoover, W. G., Vesely, F. J. (1986). Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. Phys. Rev. A 33, 4253–4265.

[46]

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L. G. (1995). A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593.

[47]

Wang, M. X., Lv, S. W., Li, M. X., Li, X., Li, C. P., Li, Z. L., Chen, X. C., Wu, J. X., Li, X. Y., Chen, Y. M. et al. (2024). A heterogeneous quasi-solid-state hybrid electrolyte constructed from electrospun nanofibers enables robust electrode/electrolyte interfaces for stable lithium metal batteries. Adv. Fiber Mater. 6, 727–738.

[48]

Chen, D. L., Zhu, M., Kang, P. B., Zhu, T., Yuan, H. C., Lan, J. L., Yang, X. P., Sui, G. (2022). Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv. Sci. 9, 2103663.

[49]

Ma, J., Feng, X. Y., Wu, Y. Y., Wang, Y. D., Liu, P. C., Shang, K., Jiang, H., Hou, X. L., Mitlin, D., Xiang, H. F. (2023). Stable sodium anodes for sodium metal batteries (SMBs) enabled by in-situ formed quasi solid-state polymer electrolyte. J. Energy Chem. 77, 290–299.

[50]

Li, Z. C., Tang, W. H., Deng, Y. R., Zhou, M. M., Wang, X. D., Liu, R. P., Wang, C. A. (2022). Enabling highly stable lithium metal batteries by using dual-function additive catalyzed in-built quasi-solid-state polymer electrolytes. J. Mater. Chem. A 10, 23047–23057.

[51]

Yu, J., Lin, X. D., Liu, J. P., Yu, J. T. T., Robson, M. J., Zhou, G. D., Law, H. M., Wang, H. R., Tang, B. Z., Ciucci, F. (2022). In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932.

[52]

Deng, B., Jing, M. X., Li, R., Li, L. X., Yang, H., Liu, M. Q., Xiang, J., Yuan, W. Y., Shen, X. Q. (2022). Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. J. Colloid Interface Sci. 620, 199–208.

[53]

Zheng, J. P., Zhang, W. D., Huang, C. Y., Shen, Z. Y., Wang, X. Y., Guo, J. Z., Li, S. Y., Mao, S. L., Lu, Y. Y. (2022). In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. Mater. Today Energy 26, 100984.

[54]

Wang, Y. Y., Li, M. N., Yang, F. H., Mao, J. F., Guo, Z. P. (2023). Developing artificial solid-state interphase for Li metal electrodes: recent advances and perspective. Energy Mater. Dev. 1, 9370005.

[55]

Wu, J. X., Ihsan-Ul-Haq, M., Chen, Y. M., Kim, J. K. (2021). Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations. Nano Energy 89, 106489.

[56]

Judez, X., Martinez-Ibañez, M., Santiago, A., Armand, M., Zhang, H., Li, C. M. (2019). Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives. J. Power Sources 438, 226985.

[57]

Li, Z. N., Yang, Z. J., Moloney, J., Yu, C. P., Chhowalla, M. (2024). Quasi-solid-state electrolyte induced by metallic MoS2 for lithium–sulfur batteries. ACS Nano 18, 16041–16050.

Energy Materials and Devices
Article number: 9370051
Cite this article:
Huang J, Song Z, Wu J, et al. In situ polymerized quasi-solid polymer electrolytes enabling void-free interfaces for room-temperature sodium–sulfur batteries. Energy Materials and Devices, 2024, 2(4): 9370051. https://doi.org/10.26599/EMD.2024.9370051

415

Views

90

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 30 November 2024
Revised: 09 December 2024
Accepted: 10 December 2024
Published: 31 December 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return