Two-dimensional (2D) nitrogen-doped graphene (NG) films have attracted considerable attention as promising metal-free electrochemical catalysts for the oxygen reduction reaction (ORR). Thermal evaporation is a versatile thin film deposition technique. However, the conventional thermal evaporation techniques present challenges in producing nitrogen-rich NG thin films because of the difficulties of a controllable manner for doping graphene with N atoms. To address this, we designed a vacuum thermal evaporation system for the large-scale preparation of 2D NG thin films. Using poly(2,5-benzimidazole) (ABPBI) as a nitrogen and carbon precursor, we deposited nitrogen-rich NG thin films with a size of 50 × 50 mm2 and controllable thickness within the range of 0.5–1.5 nm. The 2D NG samples exhibited a uniform thin film structure with moderate defects. The nitrogen-rich ABPBI precursor and defects, as well as the beneficial morphology and structure, endowed the optimal catalyst (2D NG-900) with a comparable ORR activity and superior stability compared with the commercial Pt/C (20 wt%) catalyst. This paper proposes a feasible strategy for fabricating 2D NG films as effective metal-free catalysts for the ORR.
Xu, Y. Y., Deng, P. L, Chen, G. D., Chen, J. X., Yan, Y., Qi, K., Liu, H. F., Xia, B. Y. (2020). 2D nitrogen‐doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long‐life rechargeable Zn–air batteries. Adv. Funct. Mater. 30, 1906081.
Higgins, D., Chen, Z., Lee, D. U., Chen, Z. W. (2013). Activated and nitrogen-doped exfoliated graphene as air electrodes for metal-air battery applications. J. Mater. Chem. A 1, 2639–2645.
Wu, B., Meng, H. B., Morales, D. M., Zeng, F., Zhu, J. J., Wang, B., Risch, M., Xu, Z. J., Petit, T. (2022). Nitrogen‐rich carbonaceous materials for advanced oxygen electrocatalysis: synthesis, characterization, and activity of nitrogen sites. Adv. Funct. Mater. 32, 2204137.
Wang, S., Song, W. N., Hu, M. J., Li, F. C., Song, Y. P., Ju, R., Xu, K. D., Zhou, H. T. (2024). Green synthesis of N-doped graphene nanosheets with multi-wrinkled textural properties for boosting oxygen reduction reaction in glucose fuel cell. Int. J. Hydrogen Energy 72, 226–236.
Balamurugan, J., Nguyen, T. T., Aravindan, V., Kim, N. H., Lee, J. H. (2018). Flexible solid‐state asymmetric supercapacitors based on nitrogen‐doped graphene encapsulated ternary metal‐nitrides with ultralong cycle life. Adv. Funct. Mater. 28, 1804663.
Zhou, H. P., Ye, X., Huang, W., Wu, M. Q., Mao, L. N., Yu, B., Xu, S., Levchenko, I., Bazaka, K. (2019). Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in austere environments. ACS Appl. Mater. Interfaces 11, 15122–15132.
Pham, T. V., Kim, J. G., Jung, J. Y., Kim, J. H., Cho, H., Seo, T. H., Lee, H., Kim, N. D., Kim, M. J. (2019). High areal capacitance of N‐doped graphene synthesized by arc discharge. Adv. Funct. Mater. 29, 1905511.
Qu, L. T., Liu, Y., Baek, J. B., Dai, L. (2010). Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326.
Wu, Z. H., Zhang, Y. S., Li, L., Zhao, Y. G., Shen, Y. L., Wang, S. B., Shao, G. S. (2020). Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries. J. Mater. Chem. A 8, 23248–23256.
Wang, X. W., Sun, G. Z., Routh, P., Kim, D. H., Huang, W., Chen, P. (2014). Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098.
Chaudhari, M. N. (2021). Thin film deposition methods: a critical review. Int. J. Res. Appl. Sci. Eng. Technol. 9, 5215–5232.
Yang, S. L., Zhang, L., Yang, Q. Y., Zhang, Z. H., Chen, B., Lv, P., Zhu, W., Wang, G. Z. (2015). Graphene aerogel prepared by thermal evaporation of graphene oxide suspension containing sodium bicarbonate. J. Mater. Chem. A 3, 7950–7958.
Tan, H., Wang, D. G., Guo, Y. B. (2018). Thermal growth of graphene: a review. Coatings 8, 40.
Lu, X. W., Li, Z. W., Yang, C. K., Mou, W. J., Jiao, L. Y. (2024). Synthesis of uniform two-dimensional MoS2 films via thermal evaporation. Nano Res. 17, 3217–3223.
Liu, L. N., Wu, J. X., Wu, L. Y., Ye, M., Liu, X. Z., Wang, Q., Hou, S. Y., Lu, P. F., Sun, L. F., Zheng, J. Y., et al. (2018). Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114.
Mo, Z. Y., Zheng, R. P., Peng, H. L., Liang, H. G., Liao, S. J. (2014). Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application. J. Power Sources 245, 801–807.
Kone, I., Xie, A., Tang, Y., Chen, Y., Liu, J., Chen, Y. M., Sun, Y. Z., Yang, X. J., Wan, P. Y. (2017). Hierarchical porous carbon doped with iron/nitrogen/sulfur for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 9, 20963–20973.
Zhao, Y. L., Li, X. G., Jia, X. B., Gao, S. Y. (2019). Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials. Nano Energy 58, 384–391.
Zhao, Y. S., Wan, J. W., Yao, H. Y., Zhang, L. J., Lin, K. F., Wang, L., Yang, N. L., Liu, D. B., Song, L., Zhu, J., et al. (2018). Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 10, 924–931.
Lin, Z. Y., Waller, G., Liu, Y., Liu, M. L., Wong, C. P. (2012). Facile synthesis of nitrogen‐doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen‐reduction reaction. Adv. Energy Mater. 2, 884–888.
Hyun, K., Ueno, T., Li, O. L., Saito, N. (2016). Synthesis of heteroatom-carbon nanosheets by solution plasma processing using N-methyl-2-pyrrolidone as precursor. RSC Adv. 6, 6990–6996.
Kidambi, P. R., Ducati, C., Dlubak, B., Gardiner, D., Weatherup, R. S., Martin, M. B., Seneor, P., Coles, H., Hofmann, S. (2012). The parameter space of graphene chemical vapor deposition on polycrystalline Cu. J. Phys. Chem. C 116, 22492–22501.
Wu, J. J., Ma, L. L., Yadav, R. M., Yang, Y. C., Zhang, X., Vajtai, R., Lou, J., Ajayan, P. M. (2015). Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl. Mater. Interfaces 7, 14763–14769.
Lin, Z. Y., Waller, G. H., Liu, Y., Liu, M. L., Wong, C. P. (2013). 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2, 241–248.
Thomas, M., Illathvalappil, R., Kurungot, S., Nair, B. N., Mohamed, A. A. P., Anilkumar, G. M., Yamaguchi, T., Hareesh, U. S. (2016). Graphene oxide sheathed ZIF-8 microcrystals: engineered precursors of nitrogen-doped porous carbon for efficient oxygen reduction reaction (ORR) electrocatalysis. ACS Appl. Mater. Interfaces 8, 29373–29382.
Faisal, S. N., Haque, E., Noorbehesht, N., Zhang, W. M., Harris, A. T., Church, T. L., Minett, A. I. (2017). Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv. 7, 17950–17958.
Qi, Z. J., Lu, Z. J., Guo, X. J., Jiang, J., Liu, S. J., Sun, J. W., Wang, X., Zhu, J. W., Fu, Y. S. (2024). Constructing directional electrostatic potential difference via gradient nitrogen doping for efficient oxygen reduction reaction. Small 20, 2401221.
Xiang, Q., Liu, Y. P., Zou, X. F., Hu, B. B., Qiang, Y. J., Yu, D. M., Yin, W., Chen, C. G. (2018). Hydrothermal synthesis of a new kind of N-doped graphene gel-like hybrid as an enhanced ORR electrocatalyst. ACS Appl. Mater. Interfaces 10, 10842–10850.
Wang, C., Liu, Y. P., Li, Z. F., Wang, L. K., Niu, X. L., Sun, P. (2021). Novel space-confinement synthesis of two-dimensional Fe, N-codoped graphene bifunctional oxygen electrocatalyst for rechargeable air-cathode. Chem. Eng. J. 411, 128492.
Ranjbar Sahraie, N., Paraknowitsch, J. P., Göbel, C., Thomas, A., Strasser, P. (2014). Noble-metal-free electrocatalysts with enhanced ORR performance by task-specific functionalization of carbon using ionic liquid precursor systems. J. Am. Chem. Soc. 136, 14486–14497.