PDF (9 MB)
Collect
Submit Manuscript
Research Article | Open Access | Online First

Detailed computational modeling of crack patterns of silicon-based anode sheet in lithium-ion batteries upon mechanical stress

Yuzuki Kawashima1Kazuma Ogata1Yuto Shibayama1Aoi Takagi1Akio Yonezu1()Jun Xu2,3()
Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo 1128551, Japan
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
Energy Mechanics and Sustainability Laboratory (EMSLab), University of Delaware, Newark, DE 19716, USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Silicon (Si)-based anodes, where Si serves as the active material, have garnered significant attention due to their potential to achieve high electric capacity in lithium-ion batteries (LIBs). A key challenge with Si-based anodes is their susceptibility to create in-plane cracks caused by stresses from the manufacturing process and cyclic charging, which ultimately shortens battery life and reduces the overall electrochemical capacity. To address this issue, a refined microstructural design of the active material layer is in pressing need to enhance both the performance and longevity of LIBs. We successfully applied the Oyane failure criterion, which models ductile failure under stress triaxiality, to simulate crack initiation and propagation in the binder matrix containing Si particles in the finite element modeling. Given the non-linear plastic deformation of the binder, this criterion was formulated based on cumulative strain increments. The computational results of microcrack formation within the active material layer under uniaxial tension were then validated by the experimental observations. Furthermore, we developed several models with varied particle arrangements, comparing each simulated crack path to actual microstructural images obtained via scanning electron microscopy. The findings confirm the accuracy of the model, underlying its promising application in optimizing the microstructure of Si-based anodes for enhanced LIB performance and durability.

References

[1]

Xie, J., Lu, Y. C. (2020). A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499.

[2]

Liu, B. H., Jia, Y. K., Yuan, C. H., Wang, L. B., Gao, X., Yin, S., Xu, J. (2020). Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater. 24, 85–112.

[3]

Gao, X., Chak, C., Hao, Q., Zeng, D., Xu, J. (2023). Thermal safety of lithium-ion batteries: mechanism, modeling, and characterizations. Annu. Rev. Heat Transfer 26, 69–129.

[4]

Liu, T., Dong, T. T., Wang, M. Y., Du, X. F., Sun, Y. L., Xu, G. J., Zhang, H. R., Dong, S. M., Cui, G. L. (2024). Recycled micro-sized silicon anode for high-voltage lithium-ion batteries. Nat. Sustain. 7, 1057–1066.

[5]

Kim, N., Kim, Y., Sung, J., Cho, J. (2023). Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933.

[6]

Gao, X., Jia, Y. K., Zhang, W., Yuan, C. H., Xu, J. (2022). Mechanics-driven anode material failure in battery safety and capacity deterioration issues: a review. Appl. Mech. Rev. 74, 060801.

[7]

Gao, X., Xu, J. (2024). Carbon binder domain inhomogeneity in silicon-monoxide/graphite composite anode by 2D multiphysics modeling. Adv. Sci. 11, 2400729.

[8]

Gross, S. J., Hsieh, M. T., Mumm, D. R., Valdevit, L., Mohraz, A. (2022). Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design. Extreme Mech. Lett. 54, 101746.

[9]

Jerliu, B., Hüger, E., Dörrer, L., Seidlhofer, B. K., Steitz, R., Oberst, V., Geckle, U., Bruns, M., Schmidt, H. (2014). Volume expansion during lithiation of amorphous silicon thin film electrodes studied by in- operando neutron reflectometry. J. Phys. Chem. C 118, 9395–9399.

[10]

Feyzi, E., M R, A. K., Li, X., Deng, S. X., Nanda, J., Zaghib, K. (2024). A comprehensive review of silicon anodes for high-energy lithium-ion batteries: challenges, latest developments, and perspectives. Next Energy 5, 100176.

[11]

Meng, T., Li, B., Liu, C., Wang, Q. S., Su, H. J., Hu, L., Hao, J. N., Du, E. P., Gu, F. L., Huang, B. B., et al. (2021). Surface engineering enables highly reversible lithium-ion storage and durable structure for advanced silicon anode. Cell Rep. Phys. Sci. 2, 100486 .

[12]

Li, A. M., Wang, Z. Y., Pollard, T. P., Zhang, W. R., Tan, S., Li, T. Y., Jayawardana, C., Liou, S. C., Rao, J. C., Lucht, B. L., et al. (2024). High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes. Nat. Commun. 15, 1206.

[13]

Huo, H. Y., Jiang, M., Bai, Y., Ahmed, S., Volz, K., Hartmann, H., Henss, A., Singh, C. V., Raabe, D., Janek, J. (2024). Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23, 543–551.

[14]

Zhang, L., Al-Mamun, M., Wang, L., Dou, Y. H., Qu, L. B., Dou, S. X., Liu, H. K., Zhao, H. J. (2022). The typical structural evolution of silicon anode. Cell Rep. Phys. Sci. 3, 100811.

[15]

Bonkile, M. P., Jiang, Y., Kirkaldy, N., Sulzer, V., Timms, R., Wang, H. Z., Offer, G., Wu, B. (2024). Is silicon worth it? Modelling degradation in composite silicon–graphite lithium-ion battery electrodes. J. Power Sources 606, 234256.

[16]

Kim, S. H., Dong, K., Zhao, H., El-Zoka, A. A., Zhou, X. Y., Woods, E. V., Giuliani, F., Manke, I., Raabe, D., Gault, B. (2022). Understanding the degradation of a model Si anode in a Li-ion battery at the atomic scale. J. Phys. Chem. Lett. 13, 8416–8421.

[17]

Pistorio, F., Clerici, D., Mocera, F., Somà, A. (2023). Review on the numerical modeling of fracture in active materials for lithium ion batteries. J. Power Sources 566, 232875.

[18]

Meng, X. Q., Xu, Y. L., Cao, H. B., Lin, X., Ning, P. G., Zhang, Y., Garcia, Y. G., Sun, Z. (2020). Internal failure of anode materials for lithium batteries — a critical review. Green Energy Environ. 5, 22–36.

[19]

Ogata, K., Tan, W. X., Takano, Y., Yonezu, A., Xu, J. (2023). Mechanical characterization and modeling of microstructural deformation of Si anode sheet. J. Power Sources 580, 233442.

[20]

Bahramifar, S., Haftbaradaran, H., Mossaiby, F. (2021). Cohesive modeling of crack formation in two-phase planar electrodes subject to diffusion induced stresses using the distributed dislocation method. Int. J. Mech. Sci. 194, 106183.

[21]

Oyane, M., Sato, T., Okimoto, K., Shima, S. (1980). Criteria for ductile fracture and their applications. J. Mech. Work. Technol. 4, 65–81.

[22]

Hun, D. A., Guilleminot, J., Yvonnet, J., Bornert, M. (2019). Stochastic multiscale modeling of crack propagation in random heterogeneous media. Int. J. Numer. Methods Eng. 119, 1325–1344.

[23]

Wierzbicki, T., Bao, Y. B., Lee, Y. W., Bai, Y. L. (2005). Calibration and evaluation of seven fracture models. Int. J. Mech. Sci. 47, 719–743.

[24]

Mammadi, Y., Joseph, A., Joulain, A., Bonneville, J., Tromas, C., Hedan, S., Valle, V. (2020). Nanometric metrology by FIB-SEM-DIC measurements of strain field and fracture separation on composite metallic material. Mater. Des. 192, 108665.

[25]

Liu, X., Meng, S. W., Liang, Z. Z., Tang, C. A., Tao, J. P., Tang, J. Z. (2023). Microscale crack propagation in shale samples using focused ion beam scanning electron microscopy and three-dimensional numerical modeling. Pet. Sci. 20, 1488–1512.

Energy Materials and Devices
Cite this article:
Kawashima Y, Ogata K, Shibayama Y, et al. Detailed computational modeling of crack patterns of silicon-based anode sheet in lithium-ion batteries upon mechanical stress. Energy Materials and Devices, 2025, https://doi.org/10.26599/EMD.2025.9370054
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return