PDF (23 MB)
Collect
Submit Manuscript
Review | Open Access

Revisiting the core problem impeding the commercialization of silicon-based lithium-ion batteries

Ye Cheng1Zong Guo1Chaozhen Zheng1Lihan Zhang2Shuwei Wang3,4()Hongda Du5
BGRIMM Technology Group, Beijing 100160, China
Beijing Key Laboratory of Microstructure and Property of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing 102206, China
Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, National-Local Joint Engineering Laboratory of Functional Carbon Materials, Shenzhen 518055, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

To meet the growing demand for high-energy-density lithium-ion batteries (LIBs), silicon (Si) anodes have gained attention as a promising material for next-generation anodes owing to their ultrahigh gravimetric capacity. Nevertheless, the Si anode faces significant challenges, particularly severe volume expansion during cycling, which leads to rapid capacity degradation and greatly hinders its commercialization potential. Although extensive research has focused on mitigating volume changes and constructing stable solid-electrolyte interphases on Si-based anodes, a crucial factor for practical application, namely the volumetric capacity, has been often overlooked. For Si-based anodes to replace conventional graphite anodes, their volumetric capacity must be thoroughly evaluated. Key factors determining the volumetric capacity include gravimetric capacity, active material mass ratio, initial Coulombic efficiency, electrode swelling ratio, and the negative-to-positive capacity ratio. This paper systematically analyzes, discusses, and summarizes each of these factors in detail. Common issues with existing strategies are identified, and future research directions concerning the commercialization of Si-based anodes are outlined. This study provides a systematic and novel perspective on effectively modifying and designing Si-based anodes, aiming to promote the volumetric capacity toward the large-scale industrialization of next-generation LIBs.

References

[1]

Armand, M., Tarascon, J. M. (2008). Building better batteries. Nature 451, 652–657.

[2]

Eshetu, G. G., Zhang, H., Judez, X., Adenusi, H., Armand, M., Passerini, S., Figgemeier, E. (2021). Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 12, 5459.

[3]

Li, H., Huang, X. J., Chen, L. Q., Wu, Z. G., Liang, Y. (1999). A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 2, 547–549.

[4]

Liu, X. H., Wang, J. W., Huang, S., Fan, F. F., Huang, X., Liu, Y., Krylyuk, S., Yoo, J., Dayeh, S. A., Davydov, A. V., et al. (2012). In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749–756.

[5]

Chan, C. K., Peng, H. L., Liu, G., Mcilwrath, K., Zhang, X. F., Huggins, R. A., Cui, Y. (2008). High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35.

[6]

Chan, C. K., Ruffo, R., Hong, S. S., Huggins, R. A., Cui, Y. (2009). Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 189, 34–39.

[7]

Yao, Y., McDowell, M. T., Ryu, I., Wu, H., Liu, N., Hu, L. B., Nix, W. D., Cui, Y. (2011). Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954.

[8]

Wu, H., Cui, Y. (2012). Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429.

[9]

Liu, Q., Hu, Y. H., Yu, X. R., Qin, Y. F., Meng, T., Hu, X. L. (2022). The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review. Nano Res. Energy 1, 9120037.

[10]

Ma, J., Sung, J., Hong, J., Chae, S., Kim, N., Choi, S. H., Nam, G., Son, Y., Kim, S. Y., Ko, M., et al. (2019). Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nat. Commun. 10, 475.

[11]

Yang, X. F., Doyle-Davis, K., Gao, X. J., Sun, X. L. (2022). Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries. eTransportation 11, 100152.

[12]

Yang, L., Li, S. N., Zhang, Y. M., Feng, H. B., Li, J. P., Zhang, X. Y., Guan, H., Kong, L., Chen, Z. H. (2024). Multi-scale design of silicon/carbon composite anode materials for lithium-ion batteries: A review. J. Energy Chem. 97, 30–45.

[13]

Guo, Y. X., Zhou, T., Peng, J. Y., Xu, H. H., Xue, L. H., Zhang, W. X. (2023). Calcium silicate composited nano-Si anode with low expansion and high performance for lithium-ion batteries. Energy Mater. Devices 1, 9370019.

[14]

He, Z. Y., Zhang, C. X., Zhu, Z. X., Yu, Y. X., Zheng, C., Wei, F. (2024). Advances in carbon nanotubes and carbon coatings as conductive networks in silicon-based anodes. Adv. Funct. Mater. 34, 2408285.

[15]

Liu, M., Xu, W. Q., Liu, S. G., Liu, B. W., Gao, Y., Wang, B. (2024). Directional polarization of a ferroelectric intermediate layer inspires a built-in field in Si anodes to regulate Li+ transport behaviors in particles and electrolyte. Adv. Sci. 11, 2402915.

[16]

Deng, L., Zheng, Y., Zheng, X. M., Or, T., Ma, Q. Y., Qian, L. T., Deng, Y. P., Yu, A. P., Li, J. T., Chen, Z. W. (2022). Design criteria for silicon-based anode binders in half and full cells. Adv. Energy Mater. 12, 2200850.

[17]

Kim, S., Han, D. Y., Song, G., Lee, J., Park, T., Park, S. (2023). Resilient binder network with enhanced ionic conductivity for high-areal-capacity Si-based anodes in lithium-ion batteries. Chem. Eng. J. 473, 145441,

[18]

Li, Z. Y., Zhang, H. R., Sun, X. L., Yang, Y. (2020). Mitigating interfacial instability in polymer electrolyte-based solid-state lithium metal batteries with 4 V cathodes. ACS Energy Lett. 5, 3244–3253.

[19]

Li, A. M., Wang, Z. Y., Lee, T., Zhang, N., Li, T. Y., Zhang, W. R., Jayawardana, C., Yeddala, M., Lucht, B. L., Wang, C. S. (2024). Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes. Nat. Energy 9, 1551–1560.

[20]

Li, X. L., Gu, M., Hu, S. Y., Kennard, R., Yan, P. F., Chen, X. L., Wang, C. M., Sailor, M. J., Zhang, J. G., Liu, J. (2014). Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105.

[21]

Ko, M., Chae, S., Ma, J., Kim, N., Lee, H. W., Cui, Y., Cho, J. (2016). Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 1, 16113.

[22]

Shang, H., Zuo, Z. C., Yu, L., Wang, F., He, F., Li, Y. L. (2018). Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries. Adv. Mater. 30, 1801459.

[23]

Lee, Y., Lee, T., Hong, J., Sung, J., Kim, N., Son, Y., Ma, J. Y. N., Kim, S. Y., Cho, J. (2020). Stress relief principle of micron-sized anodes with large volume variation for practical high-energy lithium-ion batteries. Adv. Funct. Mater. 30, 2004841.

[24]

Lv, Y. Y., Shang, M. W., Chen, X., Nezhad, P. S., Niu, J. J. (2019). Largely improved battery performance using a microsized silicon skeleton caged by polypyrrole as anode. ACS Nano 13, 12032–12041.

[25]

An, W. L., Gao, B., Mei, S. X., Xiang, B., Fu, J. J., Wang, L., Zhang, Q. B., Chu, P. K., Huo, K. F. (2019). Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 10, 1447.

[26]

Yi, R., Zai, J. T., Dai, F., Gordin, M. L., Wang, D. H. (2014). Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 6, 211–218.

[27]

Mu, T. S., Xiang, L. Z., Wan, X., Lou S. F., Du, C. Y., Zuo, P. J., Yin, G. P. (2022). Ultrahigh areal capacity silicon anodes realized via manipulating electrode structure. Energy Stor. Mater. 53, 958–968.

[28]

Park, S. H., King, P. J., Tian, R. Y., Boland, C. S., Coelho, J., Zhang, C. F., Mcbean, P., Mcevoy, N., Kremer, M. P., Daly, D., et al. (2019). High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567.

[29]

Song, J. X., Zhou, M. J., Yi, R., Xu, T., Gordin, M. L., Tang, D. H., Yu, Z. X., Regula, M., Wang, D. H. (2014). Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24, 5904–5910.

[30]

Liu, T. F., Chu, Q. L., Yan, C., Zhang, S. Q., Lin, Z., Lu, J. (2019). Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers. Adv. Energy Mater. 9, 1802645.

[31]

Li, Z. H., Zhang, Y. P., Liu, T. F., Gao, X. H., Li, S. Y., Ling, M., Liang, C. D., Zheng, J. C., Lin, Z. (2020). Silicon anode with high initial Coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10, 1903110.

[32]

Wang, L., Liu, T. F., Peng, X., Zeng, W. W., Jin, Z. Z., Tian, W. F., Gao, B., Zhou, Y. H., Chu, P. K., Huo, K. F. (2018). Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 28, 1704858.

[33]

Cai, Y. F., Liu, C. X., Yu, Z. A., Ma, W. C., Jin, Q., Du, R. C., Qian, B. Y., Jin, X. X., Wu, H. M., Zhang, Q. H., et al. (2023). Slidable and highly ionic conductive polymer binder for high-performance Si anodes in lithium-ion batteries. Adv. Sci. 10, 2205590.

[34]

Choi, S., Kwon, T. W., Coskun, A., Choi, J. W. (2017). Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283.

[35]

Xu, Z. X., Yang, J., Zhang, T., Nuli, Y., Wang, J. L., Hirano, S. I. (2018). Silicon microparticle anodes with self-healing multiple network binder. Joule 2, 950–961.

[36]

Kerr, R., Mazouzi, D., Eftekharnia, M., Lestriez, B., Dupré, N., Forsyth, M., Guyomard, D., Howlett, P. C. (2017). High-capacity retention of Si anodes using a mixed lithium/phosphonium bis(fluorosulfonyl)imide ionic liquid electrolyte. ACS Energy Lett. 2, 1804–1809.

[37]

Jin, Y. T., Kneusels, N. J. H., Marbella, L. E., Castillo-Martínez, E., Magusin, P. C. M. M., Weatherup, R. S., Jónsson, E., Liu, T., Paul, S., Grey, C. P. (2018). Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. Am. J. Chem. Soc. 140, 9854–9867.

[38]

Chen, J., Fan, X. L., Li, Q., Yang, H. B., Khoshi, M. R., Xu, Y. B., Hwang, S., Chen, L., Ji, X., Yang, C. Y., et al. (2020). Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397.

[39]

Cho, Y. G., Park, H., Lee, J. I., Hwang, C, Jeon, Y., Park, S., Song, H. K. (2016). Organogel electrolyte for high-loading silicon batteries. J. Mater. Chem. A 4, 8005–8009.

[40]

Huang, Q. Q., Song, J. X., Gao, Y., Wang, D. W., Liu, S., Peng, S. F., Usher, C., Goliaszewski, A., Wang, D. H. (2019). Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nat. Commun. 10, 5586.

[41]

Tan, D. H. S., Chen, Y. T., Yang, H. D., Bao, W. R. G. M. L., Sreenarayanan, B., Doux, J. M., Li, W. K., Lu, B. Y., Ham, S. Y., Sayahpour, B., et al. (2021). Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499.

[42]

Preman, A. N., Lee, H., Yoo, J., Kim, I. T., Saito, T., Ahn, S. K. (2020). Progress of 3D network binders in silicon anodes for lithium ion batteries. J. Mater. Chem. A 8, 25548–25570.

[43]

Zhao, H., Wei, Y., Qiao, R. M., Zhu, C. H., Zheng, Z. Y., Ling, M., Jia, Z., Bai, Y., Fu, Y. B., Lei, J. L., et al. (2015). Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application. Nano Lett. 15, 7927–7932.

[44]

Higgins, T. M., Park, S. H., King, P. J., Zhang, C. F., Mcevoy, N., Berner, N. C., Daly, D., Shmeliov, A., Khan, U., Duesberg, G., et al. (2016). A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10, 3702–3713.

[45]

Li, Z. H., Ji, J. P., Wu, Q., Wei, D., Li, S. Y., Liu, T. F., He, Y., Lin, Z., Ling, M., Liang, C. D. (2020). A new battery process technology inspired by partially carbonized polymer binders. Nano Energy 67, 104234.

[46]

Gao, S. L., Sun, F. Y., Brady, A., Pan, Y. Y., Erwin, A., Yang, D. D., Tsukruk, V., Stack, A. G., Saito, T., Yang, H. B., et al. (2020). Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries. Nano Energy 73, 104804.

[47]

Tang, B., He, S. G., Deng, Y. Y., Shan, Y., Qin, H. Q., Noor, H., Hou, X. H. (2023). Advanced binder with ultralow-content for high performance silicon anode. J. Power Sources 556, 232237.

[48]

Kang, M. S., Heo, I., Kim, S., Yang, J., Kim, J., Min, S. J., Chae, J., Yoo, W. C. (2022). High-areal-capacity of micron-sized silicon anodes in lithium-ion batteries by using wrinkled-multilayered-graphenes. Energy Storage Mater. 50, 234–242.

[49]

He, Z. Y., Xiao, Z. X., Yue, H. J., Jiang, Y. X., Zhao, M. Y., Zhu, Y. K., Yu, C. H., Zhu, Z. X., Lu, F., Jiang, H. R., et al. (2023). Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes. Adv. Funct. Mater. 33, 2300094.

[50]

Zhang, Z. Y., Sun, Z. F., Liu, Y., Liu, B. S., Luo, L. S., Su, P. F., Lan, C. F., Guo, S. S., Zhang, Z. Q., Han, X., et al. (2023). Face-to-face conducting mechanism enabled by Si–C bonds for binder free Si@CNTs electrode. Chem. Eng. J. 477, 146504.

[51]

Wang, H. W., Fu, J. Z., Wang, C., Wang, J. Y., Yang, A. K., Li, C. C., Sun, Q. F., Cui, Y., Li, H. Q. (2020). A binder-free high silicon content flexible anode for Li-ion batteries. Energy Environ. Sci. 13, 848–858.

[52]

Chen, H., Pei, A., Wan, J. Y., Lin, D. C., Vilá, R., Wang, H. X., Mackanic, D., Steinrück, H. G., Huang, W., Li, Y. Z., et al. (2020). Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952.

[53]

Huang, C., Leung, C. L. A., Leung, P., Grant, P. S. (2021). A solid-state battery cathode with a polymer composite electrolyte and low tortuosity microstructure by directional freezing and polymerization. Adv. Energy Mater. 11, 2002387.

[54]

Liu, N., Wu, H., McDowell, M. T., Yao, Y., Wang, C. M., Cui, Y. (2012). A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321.

[55]

Zhou, Z. W., Pan, L., Liu, Y. T. (2019). From sand to fast and stable silicon anode: Synthesis of hollow Si@void@C yolk–shell microspheres by aluminothermic reduction for lithium storage. Chin. Chem. Lett. 3, 610–617.

[56]

Yang, J. P., Wang, Y. X., Chou, S. L., Zhang, R. Y., Xu, Y. F., Fan, J. W., Zhang, W. X., Kun Liu, H., Zhao, D. Y., Xue Dou, S. (2015). Yolk–shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 18, 133–142.

[57]

Ma, Y. H., Tang, H. Q., Zhang, Y., Li, Z. F., Zhang, X. H., Tang, Z. Y. (2017). Facile synthesis of Si–C nanocomposites with yolk-shell structure as an anode for lithium-ion batteries. J. Alloys Compd. 704, 599–606.

[58]

Huang, X. K., Sui, X. Y., Yang, H., Ren, R., Wu, Y. P., Guo, X. R., Chen, J. H. (2018). HF-free synthesis of Si/C yolk/shell anodes for lithium-ion batteries. J. Mater. Chem. A 6, 2593–2599.

[59]

Jia, D. C., Feng, Y. Y., Zhang, C. L., Li, J. J., Zhang, B. W., Dou, Y. H., Roy, J. C., Zhu, X. Y., Zhang, L. (2023). Freestanding carbon fiber-confined yolk–shelled silicon-based anode for promoted lithium storage applications. Rare Met. 42, 3718–3728.

[60]

Liu, Z., Luo, Y. W., Zhou, M. J., Wang, W. Q., Gan, N., Okada, S., Yamaki, J. I. (2015). Enhanced performance of yolk–shell structured Si–PPy composite as an anode for lithium ion batteries. Electrochemistry 83, 1067–1070.

[61]

Jin, Y., Li, S., Kushima, A., Zheng, X. Q., Sun, Y. M., Xie, J., Sun, J., Xue, W. J., Zhou, G. M., Wu, J., et al. (2017). Self-healing SEI enables full-cell cycling of a silicon-majority anode with a Coulombic efficiency exceeding 99.9%. Energy Environ. Sci. 10, 580–592.

[62]

Zhang, L., Wang, C. R., Dou, Y. H., Cheng, N. Y., Cui, D. D., Du, Y., Liu, P. R., Al-Mamun, M., Zhang, S. Q., Zhao, H. J. (2019). A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries. Angew. Chem. Int. Ed. 58, 8824–8828.

[63]

Zhang, L., Huang, Q. W., Liao, X. Z., Dou, Y. H., Liu, P. R., Al-Mamun, M., Wang, Y., Zhang, S. Q., Zhao, S. L., Wang, D., et al. (2021). Scalable and controllable fabrication of CNTs improved yolk–shelled Si anodes with advanced in operando mechanical quantification. Energy Environ. Sci. 14, 3502–3509.

[64]

Liu, N., Lu, Z. D., Zhao, J., Mcdowell, M. T., Lee, H. W., Zhao, W. T., Cui, Y. (2014). A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192.

[65]

Lin, D. C., Lu, Z. D., Hsu, P. C., Lee, H. R., Liu, N., Zhao, J., Wang, H. T., Liu, C., Cui, Y. (2015). A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 8, 2371–2376.

[66]

Chae, S., Ko, M., Park, S., Kim, N., Ma, J., Cho, J. (2016). Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries. Energy Environ. Sci. 9, 1251–1257.

[67]

Liu, J., Zhang, Q., Wu, Z. Y., Li, J. T., Huang, L., Sun, S. G. (2015). Nano-/microstructured Si/C composite with high tap density as an anode material for lithium-ion batteries. ChemElectroChem 2, 611–616.

[68]

Xu, Q., Li, J. Y., Sun, J. K., Yin, Y. X., Wan, L. J., Guo, Y. G. (2017). Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7, 1601481.

[69]

Li, J. Y., Li, G., Zhang, J., Yin, Y. X., Yue, F. S., Xu, Q., Guo, Y. G. (2019). Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl. Mater. Interfaces 11, 4057–4064.

[70]

Xu, Q., Sun, J. K., Li, J. Y., Yin, Y. X., Guo, Y. G. (2018). Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries. Energy Storage Mater. 12, 54–60.

[71]

Han, J. W., Tang, D. M., Kong, D. B., Chen, F. Q., Xiao, J., Zhao, Z. Y., Pan, S. Y., Wu, S. C., Yang, Q. H. (2020). A thick yet dense silicon anode with enhanced interface stability in lithium storage evidenced by in situ TEM observations. Sci. Bull. 65, 1563–1569.

[72]

Yi, R., Dai, F., Gordin, M. L., Chen, S. R., Wang, D. H. (2013). Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295–300.

[73]

Zhang, Y., Zhang, R., Chen, S. C., Gao, H. P., Li, M. Q., Song, X. L., Xin, H. L., Chen, Z. (2020). Diatomite-derived hierarchical porous crystalline-amorphous network for high-performance and sustainable Si anodes. Adv. Funct. Mater. 30, 2005956.

[74]

Li, Y. Z., Yan, K., Lee, H. W., Lu, Z. D., Liu, N., Cui, Y. (2016). Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029.

[75]

Zhang, X. H., Guo, R. Y., Li, X. L., Zhi, L. J. (2018). Scallop-inspired shell engineering of microparticles for stable and high volumetric capacity battery anodes. Small 14, 1800752.

[76]

Chen, F. Q., Han, J. W., Kong, D. B., Yuan, Y. F., Xiao, J., Wu, S. C., Tang, D. M., Deng, Y. Q., Lv, W., Lu, J., et al. (2021). 1000 Wh·L−1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl. Sci. Rev. 8, nwab012.

[77]

Li, G., Huang, L. B., Yan, M. Y., Li, J. Y., Jiang, K. C., Yin, Y. X., Xin, S., Xu, Q., Guo, Y. G., et al. (2020). An integral interface with dynamically stable evolution on micron-sized SiO x particle anode. Nano Energy 74, 104890.

[78]

Xu, Q., Sun, J. K., Yin, Y. X., Guo, Y. G. (2018). Facile synthesis of blocky SiO x /C with graphite-like structure for high-performance lithium-ion battery anodes. Adv. Funct. Mater. 28, 1705235.

[79]

Chae, S., Ko, M., Kim, K., Ahn, K., Cho, J. (2017). Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1, 47–60.

[80]

Prado, A. Y. R., Rodrigues, M. T. F., Trask, S. E., Shaw, L., Abraham, D. P. (2020). Electrochemical dilatometry of Si-bearing electrodes: Dimensional changes and experiment design. J. Electrochem. Soc. 167, 160551.

[81]

Li, X. L., Yan, P. F., Xiao, X. C., Woo, J. H., Wang, C. M., Liu, J., Zhang, J. G. (2017). Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci. 10, 1427–1434.

[82]

Lee, J., Moon, J., Han, S. A., Kim, J., Malgras, V., Heo, Y. U., Kim, H., Lee, S. M., Liu, H. K., Dou, S. X., et al. (2019). Everlasting living and breathing gyroid 3D network in Si@SiO x /C nanoarchitecture for lithium ion battery. ACS Nano 13, 9607–9619.

[83]

Hou, G. L., Cheng, B. L., Yang, Y. J., Du, Y., Zhang, Y. H., Li, B. Q., He, J. P., Zhou, Y. Z., Yi, D., Zhao, N. N., et al. (2019). Multiscale buffering engineering in silicon−carbon anode for ultrastable Li-ion storage. ACS Nano 13, 10179–10190.

[84]

Zhu, G. J., Chao, D. L., Xu, W. L., Wu, M. H., Zhang, H. J. (2021). Microscale silicon-based anodes: Fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 15, 15567–15593.

Energy Materials and Devices
Article number: 9370055
Cite this article:
Cheng Y, Guo Z, Zheng C, et al. Revisiting the core problem impeding the commercialization of silicon-based lithium-ion batteries. Energy Materials and Devices, 2025, 3(1): 9370055. https://doi.org/10.26599/EMD.2025.9370055
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return