The presence of residual alkaline compounds in the ultrahigh-nickel layered oxide cathodes (LiNixCoyMn1−x−yO2, x ≥ 0.9) aggravates structural degradation, increases surface reactivity, and promotes slurry gelation, leading to the capacity decay of batteries with these cathodes and complicating their manufacturing. Traditional approaches for addressing this issue, including direct removal, coverage, and utilization, are complex and require surface regeneration. Herein, we propose neutralizing residual alkaline compounds with 3-thiopheneboronic acid (3-TBA) to improve the performance of LiNi0.95Co0.04Mn0.01O2 (NCM) cathode material, a facile strategy that does not require any post-treatment. The suggested reaction yields a uniform and thin organic-modified layer on the surface of the NCM cathode, improving its chemical stability toward the electrolyte, as demonstrated by multiple characterization methods. The modified NCM cathode exhibited impressive cyclic and rate performances, achieving a capacity retention of 83.34% after 200 cycles at 1.0 C and a specific capacity of 162.00 mAh·g−1 at 10.0 C. Most importantly, the proposed approach can efficiently suppress unfavorable phase transitions, severe electrolyte degradation, and CO2 gas evolution, improving the application potential of ultrahigh-nickel layered oxide cathode materials.
Zhou, T., Yu, X. R., Li, F., Zhang, J. W., Liu, B. W., Wang, L. L., Yang, Y., Hu, Z. W., Ma, J., Li, C., et al. (2023). Bulk oxygen release inducing cyclic strain domains in Ni-rich ternary cathode materials. Energy Storage Mater. 55, 691–697.
Cho, D. H., Jo, C. H., Cho, W., Kim, Y. J., Yashiro, H., Sun, Y. K., Myung, S. T. (2014). Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J. Electrochem. Soc. 161, A920–A926.
Liu, W., Oh, P., Liu, X. E., Lee, M. J., Cho, W., Chae, S., Kim, Y., Cho, J. (2015). Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457.
Chu, B. B., Li, G. X., You, L. Z., Huang, T., Liu, M. M., Yu, A. S. (2021). Enhancing the air stability of LiNi0.6Co0.2Mn0.2O2 cathode through WO3/Li2WO4 surface modification. J. Power Sources 514, 230605.
Zhou, Y. F., Hu, Z. Y., Huang, Y. H., Wu, Y. J., Hong, Z. J. (2021). Effect of solution wash on the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials. J. Alloys Compd. 888, 161584.
Xu, S., Du, C. Y., Xu, X., Han, G. K., Zuo, P. J., Cheng, X. Q., Ma, Y. L., Yin, G. P. (2017). A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim. Acta 248, 534–540.
Yang, S. D., Fan, Q. L., Shi, Z. C., Liu, L. Y., Liu, J., Ke, X., Liu, J. P., Hong, C. Y., Yang, Y., Guo, Z. P. (2019). Superior stability secured by a four-phase cathode electrolyte interface on a Ni-rich cathode for lithium ion batteries. ACS Appl. Mater. Interfaces 11, 36742–36750.
Chen, Z., Nguyen, H. D., Zarrabeitia, M., Liang, H. P., Geiger, D., Kim, J. K., Kaiser, U., Passerini, S., Iojoiu, C., Bresser, D. (2021). Lithium phosphonate functionalized polymer coating for high-energy Li[Ni0.8Co0.1Mn0.1]O2 with superior performance at ambient and elevated temperatures. Adv. Funct. Mater. 31, 2105343.
Zhang, W. J., Yuan, C. H., Zhu, J. F., Jin, T., Shen, C., Xie, K. Y. (2023). Air instability of Ni-rich layered oxides—A roadblock to large scale application. Adv. Energy Mater. 13, 2202993.
Yang, T. H., Zhang, K., Zuo, Y. X., Song, J., Yang, Y. L., Gao, C., Chen, T., Wang, H. C., Xiao, W. K., Jiang, Z. W., et al. (2024). Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries. Nat. Sustain. 7, 1204–1214.
Seong, W. M., Cho, K. H., Park, J. W., Park, H., Eum, D., Lee, M. H., Kim, I. S. S., Lim, J., Kang, K. (2020). Controlling residual lithium in high-nickel (>90%) lithium layered oxides for cathodes in lithium-ion batteries. Angew. Chem. Int. Ed. 59, 18662–18669.
Horner, J. S., Whang, G., Ashby, D. S., Kolesnichenko, I. V., Lambert, T. N., Dunn, B. S., Talin, A. A., Roberts, S. A. (2021). Electrochemical modeling of GITT measurements for improved solid-state diffusion coefficient evaluation. ACS Appl. Energy Mater. 4, 11460–11469.
Deiss, E. (2005). Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT. Electrochim. Acta 50, 2927–2932.
Hua, W. B., Schwarz, B., Azmi, R., Müller, M., Dewi Darma, M. S., Knapp, M., Senyshyn, A., Heere, M., Missyul, A., Simonelli, L., et al. (2020). Lithium-ion (de)intercalation mechanism in core–shell layered Li(Ni,Co,Mn)O2 cathode materials. Nano Energy 78, 105231.
Zuo, W. H., Luo, M. Z., Liu, X. S., Wu, J., Liu, H. D., Li, J., Winter, M., Fu, R. Q., Yang, W. L., Yang, Y. (2020). Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques. Energy Environ. Sci. 13, 4450–4497.
Xia, Y., Zheng, J. M., Wang C. M., Gu, M. (2018). Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49, 434–452.
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y. Y., Wu, Y., Nguyen, S. T., Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565.
Hartmann, L., Pritzl, D., Beyer, H., Gasteiger, H. A. (2021). Evidence for Li+/H+ exchange during ambient storage of Ni-rich cathode active materials. J. Electrochem. Soc. 168, 070507.
Zhong, Y. X., Li, C. M., Xu, G. B., Xu, C. Y., Dong, J., Liu, D. Y., Lu, D. C., You, J. Y., Gao, C. M., Song, Q. L. (2022). Collaborative strengthening by multi-functional molecule 3-thiophenboric acid for efficient and stable planar perovskite solar cells. Chem. Eng. J. 436, 135134.
Li, Z. F., Lin, X. Y., Zhou, H. B., Xing, L. D., Lan, G. Y., Zhang, W. G., Chen, J. W., Liu, M. Z., Huang, Q. M., Li, W. S. (2020). Stabilizing the interphasial layer of Ni-rich cathode and graphite anode for lithium ion battery with multifunctional additive. J. Power Sources 467, 228343.
Ren, W. H., Huang, Y., Li, S. S., Gan, J. Y., Yang, J., Li, X., Wang, M. S., Cao, H. J. (2021). 3-Thiopheneboronic acid: An effective additive for regulation on electrode/electrolyte interphase of lithium metal battery with high-loading cathode. Electrochim. Acta 386, 138485.
Dai, Z. S., Wang, J. H., Zhao, H. L., Bai, Y. (2022). Surface coupling between mechanical and electric fields empowering Ni-rich cathodes with superior cyclabilities for lithium-ion batteries. Adv. Sci. 9, 2200622.
Zhang, X. Y., Xu, J., Liu, X. T., Cheng, F. Y., Wei, P., Xu, Y., Sun, S. X., Lin, H., Shen, Y., Li, Q., et al. (2022). Building a stabilized structure from surface to bulk of Ni-rich cathode for enhanced electrochemical performance. Energy Storage Mater. 47, 87–97.
Han, J. G., Kim, K., Lee, Y., Choi, N. S. (2019). Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries. Adv. Mater. 31, 1804822.
Li, Y., Chen, J. X., Cai, P. W., Wen, Z. H. (2018). An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J. Mater. Chem. A 6, 4948–4954.
Ye, J. C., Lai, Y. W., Huang, X. H., Chang, Z. X., Chung, Y. H., Shu, C. M. (2024). Development of the electrolyte in lithium-ion battery: A concise review on its thermal hazards. J. Therm. Anal. Calorim. 149, 11293–11312.
Liu, W., Li, X. F., Xiong, D. B., Hao, Y. C., Li, J. W., Kou, H. R., Yan, B., Li, D. J., Lu, S. G., Koo, A., et al. (2018). Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44, 111–120.
Liu, J. D., Wu, Z. H., Yu, M., Hu, H. L., Zhang, Y. D., Zhang, K., Du, Z. X., Cheng, F. Y., Chen, J. (2022). Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials. Small 18, 2106337.
Liu, Y. J., Zeng, T. Y., Li, G. T., Wan, T., Li, M. Y., Zhang, X. Y., Li, M. Q., Su, M. R., Dou, A. C., Zeng, W. S., et al. (2022). The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Storage Mater. 52, 534–546.
Wandt, J., Freiberg, A. T. S., Ogrodnik, A., Gasteiger, H. A. (2018). Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21, 825–833.
Lin, T. E., Seaby, T., Hu, Y. X., Ding, S. S., Liu, Y., Luo, B., Wang, L. Z. (2022). Understanding and control of activation process of lithium-rich cathode materials. Electrochem. Energy Rev. 5, 27.
Boivin, E., Guerrini, N., House, R. A., Lozano, J. G., Jin, L. Y., Rees, G. J., Somerville, J. W., Kuss, C., Roberts, M. R., Bruce, P. G. (2021). The role of Ni and Co in suppressing O-loss in Li-rich layered cathodes. Adv. Funct. Mater. 31, 2003660.
Hu, G. L., Yang, Z. L., Zhang, X. X., Liu, Y. C., Lin, Y. S., Chen, S. J., Chen, Y. Q., Sa, B. S., Zhang, Y. N. (2024). Strongly solvating triglyme-based electrolyte realizes stable lithium metal batteries at high-voltage and high-temperature. Energy Storage Mater. 69, 103402.
Groß, A. (2018). Fundamental challenges for modeling electrochemical energy storage systems at the atomic scale. Top. Curr. Chem. 376, 17.
Kim, S., Huang, H. Y. S. (2016) Mechanical stresses at the cathode–electrolyte interface in lithium-ion batteries. J. Mater. Res. 31, 3506–3512.
Huang, Z. X., Liu, X., Zheng, Y., Wang, Q., Liu, J. W., Xu, S. M. (2023). Boosting efficient and low-energy solid phase regeneration for single crystal LiNi0.6Co0.2Mn0.2O2 via highly selective leaching and its industrial application. Chem. Eng. J. 451, 139039.
Zhu, Z., Wang, H., Li, Y., Gao, R., Xiao, X. H., Yu, Q. P., Wang, C., Waluyo, I., Ding, J. X., Hunt, A., et al. (2020). A surface se-substituted LiCo[O2−δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv. Mater. 32, 2005182.