PDF (6.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Tables (2)
Table 1
Table 2
Research Article | Open Access

Laboratory-based X-ray diffractometer with fast time resolution for operando battery studies

Zhenzhong Li1,2Chao Wang1Fanqiang Meng3Zhou Zhou4Lei Li2Chunzhen Yang1()Dongbai Sun5()
School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
Institute of Advanced Science Facilities, Shenzhen 518107, China
Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Operando X-ray diffraction (XRD) is an important characterization tool for real-time monitoring of structural changes in materials under different reaction conditions. In this study, we developed a laboratory-based diffractometer that could capture a full XRD spectrum within 10 s. The instrument has several advanced features. First, it uses a Ga–In alloy metal-jet X-ray source, thereby achieving high X-ray flux with a brightness of up to 3.0 × 1010 photons/(s·mm2·mrad2). Second, it employs an ellipsoidal mirror with a multilayer coating to produce quasi-parallel monochromatic light characterized by a divergence of 0.6 mrad and an energy resolution of 5.9 × 10−3. Third, it is equipped with a high-efficiency, high-signal-to-noise-ratio Pilatus 3R 1M detector for collecting diffraction signals. These features make the developed instrument applicable in studying rapid phase transitions in lithium-ion batteries, especially under extremely fast charge–discharge conditions. The data quality was comparable to that of synchrotron radiation XRD.

References

[1]
Guideline, I., Forensic, N. A. R., Intern, S. (2017). In Itwg Guideline on Powder X-Ray Diffraction (XRD)—General Overview. Roubaix: Nuclear Forensics International Technical Working Group.
[2]
Echevarria-Bonet, C. (2014). Size induced electronic and magnetic changes in nanometric Rare Earth alloys. Ph.D. Dissertation. University of Oviedo, Oviedo, Spain.
[3]

Altomare, A., Cuocci, C., Gatta, G. D., Moliterni, A., Rizzi, R. (2017). Methods of crystallography: Powder X-ray diffraction. EMU Notes Mineral. 29, 79–138.

[4]

Hofbauer, S., Brito, J. A., Mulchande, J., Nogly, P., Pessanha, M., Moreira, R., Archer, M. (2015). Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking. Acta Crystallogr. Sect. F: Struct. Biol. Commun. 71, 1346–1351.

[5]

Li, H. Y., Guo, S. H., Zhou, H. S. (2021). In-situ/ operando characterization techniques in lithium-ion batteries and beyond. J. Energy Chem. 59, 191–211.

[6]
Hallstedt, J., Espes, E., Lundstrom, U., Hansson, B. (2018). In Liquid-Metal-Jet X-Ray Technology for Nanoelectronics Characterization and Metrology. In Proceedings of 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, p 151–154.
[7]

Troussel, P., Dennetiere, D., Maroni, R., Høghøj, P., Hedacq, S., Cibik, L., Krumrey, M. (2014). Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom, Detect., Assoc. Equip. 767, 1–4.

[8]
Rio, M. S. D., Rebuffi, L. (2019). OASYS: A software for beamline simulations and synchrotron virtual experiments. In Proceedings of the 13th International Conference on Synchrotron Radiation Instrumentation—Sri2018. Taipei, China, p 060081.
[9]
DECTRIS. PILATUS3 R 1M Documentation. https://www.dectris.com/en/support/manuals-docs/pilatus3-r-for-laboratory/pilatus3-r-1m/ (accessed May 15, 2024).
[10]

Midgley, S. (2006). Energy resolution for accurate measurements of the X-ray linear attenuation coefficient. Radiat. Phys. Chem. 75, 936–944.

[11]

Nakae, M., Matsuyama, T., Ishi, H., Tsuji, K. (2023). Mathematical considerations for evaluating X-ray beam size in micro-XRF analysis. X-Ray Spectrome. 52, 290–302.

[12]

Gherase, M. R., Vargas, A. F. (2017). Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 395, 5–12.

[13]

Owen, R. L., Holton, J. M., Schulze-Briese, C., Garman, E. F. (2009). Determination of X-ray flux using silicon pin diodes. J. Synchrotron Radiat. 16, 143–151.

[14]
HAMAMATSU. Large-area Si PIN photodiode for direct radiation detection. https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S13993.html (accessed May 15, 2024).
[15]

Zeng, J., Bian, F., Wang, J., Li, X., Wang, Y., Tian, F., Zhou, P. (2017). Performance on absolute scattering intensity calibration and protein molecular weight determination at BL16B1, a dedicated SAXS beamline at SSRF. J. Synchrotron Radiat. 24, 509–520.

[16]

Armand, M., Tarascon, J. M. (2008). Building better batteries. Nature 451, 652–657.

[17]

Andre, D., Kim, S. J., Lamp, P., Lux, S. F., Maglia, F., Paschos, O., Stiaszny, B. (2015). Future generations of cathode materials: An automotive industry perspective. J. Mater. Chem. A 3, 6709–6732.

[18]

Zhu, G. J., Luo, D. D., Chen, X. Y., Yang, J. P., Zhang, H. J. (2023). Emerging multiscale porous anodes toward fast charging lithium-ion batteries. ACS Nano 17, 20850–20874.

[19]

Jin, H. C., Huang, Y. S., Wang, C. N., Ji, H. X. (2022). Phosphorus-based anodes for fast charging lithium-ion batteries: Challenges and opportunities. Small Sci. 2, 2200015.

[20]

Chen, K. H., Goel, V., Namkoong, M. J., Wied, M., Müller, S., Wood, V., Sakamoto, J., Thornton, K., Dasgupta, N. P. (2021). Enabling 6 C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 11, 2003336.

[21]

Li, S. Q., Wang, K., Zhang, G. F., Li, S. N., Xu, Y. N., Zhang, X. D., Zhang, X., Zheng, S. H., Sun, X. Z., Ma, Y. W. (2022). Fast charging anode materials for lithium‐ion batteries: Current status and perspectives. Adv. Funct. Mater. 32, 2200796.

[22]

Zhang, Z., Zhao, D. C., Xu, Y. Y., Liu, S. P., Xu, X. Y., Zhou, J., Gao, F., Tang, H., Wang, Z. L., Wu, Y. T., et al. (2022). A review on electrode materials of fast‐charging lithium‐ion batteries. Chem. Rec. 22, e202200127.

[23]

Wu, F., Liu, N., Chen, L., Li, N., Dong, J. Y., Lu, Y., Tan, G. Q., Xu, M. Z., Cao, D. Y., Liu, Y. F., et al. (2021). The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. J. Energy Chem. 62, 351–358.

[24]

Cui, S. H., Wei, Y., Liu, T. C., Deng, W. J., Hu, Z. X., Su, Y. T., Li, H., Li, M. F., Guo, H., Duan, Y. D., et al. (2016). Optimized temperature effect of Li-ion diffusion with layer distance in Li(Ni x Mn y Co z )O2 cathode materials for high performance Li-ion battery. Adv. Energy Mater. 6, 1501309.

[25]

Zou, L. F., Liu, Z. Y., Zhao, W. G., Jia, H. P., Zheng, J. M., Yang, Y., Wang, G. F., Zhang, J. G., Wang, C. M. (2018). Solid–liquid interfacial reaction trigged propagation of phase transition from surface into bulk lattice of Ni-rich layered cathode. Chem. Mater. 30, 7016–7026.

[26]

Liao, J. Y., Manthiram, A. (2015). Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries. J. Power Sources 282, 429–436.

[27]

Geßwein, H., Stüble, P., Weber, D., Binder, J. R., Mönig, R. (2022). A multipurpose laboratory diffractometer for operando powder X-ray diffraction investigations of energy materials. J. Appl. Crystallogr. 55, 503–514.

[28]

Gorfman, S., Spirito, D., Cohen, N., Siffalovic, P., Nadazdy, P., Li, Y. (2021). Multipurpose diffractometer for in situ X-ray crystallography of functional materials. J. Appl. Crystallogr. 54, 914–923.

[29]

Wu, Z. B., Pang, W. K., Chen, L. B., Johannessen, B., Guo, Z. P. (2021). In situ synchrotron X‐ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batter. Supercaps 4, 1547–1566.

[30]

Yoon, C. S., Ryu, H. H., Park, G. T., Kim, J. H., Kim, K. H., Sun, Y. K. (2018). Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries. J. Mater. Chem. A 6, 4126–4132.

[31]

Zhu, H., Tang, Y., Wiaderek, K. M., Borkiewicz, O. J., Ren, Y., Zhang, J., Ren, J. C., Fan, L. L., Li, C. C., Li, D. F., et al. (2021). Spontaneous strain buffer enables superior cycling stability in single-crystal nickel-rich NCM cathode. Nano Lett. 21, 9997–10005.

[32]

Ryu, H. H., Park, K. J., Yoon, D. R., Aishova, A., Yoon, C. S., Sun, Y. K. (2019). Li[Ni0.9Co0.09W0.01]O2: A new type of layered oxide cathode with high cycling stability. Adv. Energy Mater. 9, 1902698.

Energy Materials and Devices
Article number: 9370057
Cite this article:
Li Z, Wang C, Meng F, et al. Laboratory-based X-ray diffractometer with fast time resolution for operando battery studies. Energy Materials and Devices, 2025, 3(1): 9370057. https://doi.org/10.26599/EMD.2025.9370057
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return