Operando X-ray diffraction (XRD) is an important characterization tool for real-time monitoring of structural changes in materials under different reaction conditions. In this study, we developed a laboratory-based diffractometer that could capture a full XRD spectrum within 10 s. The instrument has several advanced features. First, it uses a Ga–In alloy metal-jet X-ray source, thereby achieving high X-ray flux with a brightness of up to 3.0 × 1010 photons/(s·mm2·mrad2). Second, it employs an ellipsoidal mirror with a multilayer coating to produce quasi-parallel monochromatic light characterized by a divergence of 0.6 mrad and an energy resolution of 5.9 × 10−3. Third, it is equipped with a high-efficiency, high-signal-to-noise-ratio Pilatus 3R 1M detector for collecting diffraction signals. These features make the developed instrument applicable in studying rapid phase transitions in lithium-ion batteries, especially under extremely fast charge–discharge conditions. The data quality was comparable to that of synchrotron radiation XRD.
Altomare, A., Cuocci, C., Gatta, G. D., Moliterni, A., Rizzi, R. (2017). Methods of crystallography: Powder X-ray diffraction. EMU Notes Mineral. 29, 79–138.
Hofbauer, S., Brito, J. A., Mulchande, J., Nogly, P., Pessanha, M., Moreira, R., Archer, M. (2015). Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking. Acta Crystallogr. Sect. F: Struct. Biol. Commun. 71, 1346–1351.
Li, H. Y., Guo, S. H., Zhou, H. S. (2021). In-situ/ operando characterization techniques in lithium-ion batteries and beyond. J. Energy Chem. 59, 191–211.
Troussel, P., Dennetiere, D., Maroni, R., Høghøj, P., Hedacq, S., Cibik, L., Krumrey, M. (2014). Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom, Detect., Assoc. Equip. 767, 1–4.
Midgley, S. (2006). Energy resolution for accurate measurements of the X-ray linear attenuation coefficient. Radiat. Phys. Chem. 75, 936–944.
Nakae, M., Matsuyama, T., Ishi, H., Tsuji, K. (2023). Mathematical considerations for evaluating X-ray beam size in micro-XRF analysis. X-Ray Spectrome. 52, 290–302.
Gherase, M. R., Vargas, A. F. (2017). Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 395, 5–12.
Owen, R. L., Holton, J. M., Schulze-Briese, C., Garman, E. F. (2009). Determination of X-ray flux using silicon pin diodes. J. Synchrotron Radiat. 16, 143–151.
Zeng, J., Bian, F., Wang, J., Li, X., Wang, Y., Tian, F., Zhou, P. (2017). Performance on absolute scattering intensity calibration and protein molecular weight determination at BL16B1, a dedicated SAXS beamline at SSRF. J. Synchrotron Radiat. 24, 509–520.
Armand, M., Tarascon, J. M. (2008). Building better batteries. Nature 451, 652–657.
Andre, D., Kim, S. J., Lamp, P., Lux, S. F., Maglia, F., Paschos, O., Stiaszny, B. (2015). Future generations of cathode materials: An automotive industry perspective. J. Mater. Chem. A 3, 6709–6732.
Zhu, G. J., Luo, D. D., Chen, X. Y., Yang, J. P., Zhang, H. J. (2023). Emerging multiscale porous anodes toward fast charging lithium-ion batteries. ACS Nano 17, 20850–20874.
Jin, H. C., Huang, Y. S., Wang, C. N., Ji, H. X. (2022). Phosphorus-based anodes for fast charging lithium-ion batteries: Challenges and opportunities. Small Sci. 2, 2200015.
Chen, K. H., Goel, V., Namkoong, M. J., Wied, M., Müller, S., Wood, V., Sakamoto, J., Thornton, K., Dasgupta, N. P. (2021). Enabling 6 C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 11, 2003336.
Li, S. Q., Wang, K., Zhang, G. F., Li, S. N., Xu, Y. N., Zhang, X. D., Zhang, X., Zheng, S. H., Sun, X. Z., Ma, Y. W. (2022). Fast charging anode materials for lithium‐ion batteries: Current status and perspectives. Adv. Funct. Mater. 32, 2200796.
Zhang, Z., Zhao, D. C., Xu, Y. Y., Liu, S. P., Xu, X. Y., Zhou, J., Gao, F., Tang, H., Wang, Z. L., Wu, Y. T., et al. (2022). A review on electrode materials of fast‐charging lithium‐ion batteries. Chem. Rec. 22, e202200127.
Wu, F., Liu, N., Chen, L., Li, N., Dong, J. Y., Lu, Y., Tan, G. Q., Xu, M. Z., Cao, D. Y., Liu, Y. F., et al. (2021). The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. J. Energy Chem. 62, 351–358.
Cui, S. H., Wei, Y., Liu, T. C., Deng, W. J., Hu, Z. X., Su, Y. T., Li, H., Li, M. F., Guo, H., Duan, Y. D., et al. (2016). Optimized temperature effect of Li-ion diffusion with layer distance in Li(Ni x Mn y Co z )O2 cathode materials for high performance Li-ion battery. Adv. Energy Mater. 6, 1501309.
Zou, L. F., Liu, Z. Y., Zhao, W. G., Jia, H. P., Zheng, J. M., Yang, Y., Wang, G. F., Zhang, J. G., Wang, C. M. (2018). Solid–liquid interfacial reaction trigged propagation of phase transition from surface into bulk lattice of Ni-rich layered cathode. Chem. Mater. 30, 7016–7026.
Liao, J. Y., Manthiram, A. (2015). Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries. J. Power Sources 282, 429–436.
Geßwein, H., Stüble, P., Weber, D., Binder, J. R., Mönig, R. (2022). A multipurpose laboratory diffractometer for operando powder X-ray diffraction investigations of energy materials. J. Appl. Crystallogr. 55, 503–514.
Gorfman, S., Spirito, D., Cohen, N., Siffalovic, P., Nadazdy, P., Li, Y. (2021). Multipurpose diffractometer for in situ X-ray crystallography of functional materials. J. Appl. Crystallogr. 54, 914–923.
Wu, Z. B., Pang, W. K., Chen, L. B., Johannessen, B., Guo, Z. P. (2021). In situ synchrotron X‐ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batter. Supercaps 4, 1547–1566.
Yoon, C. S., Ryu, H. H., Park, G. T., Kim, J. H., Kim, K. H., Sun, Y. K. (2018). Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries. J. Mater. Chem. A 6, 4126–4132.
Zhu, H., Tang, Y., Wiaderek, K. M., Borkiewicz, O. J., Ren, Y., Zhang, J., Ren, J. C., Fan, L. L., Li, C. C., Li, D. F., et al. (2021). Spontaneous strain buffer enables superior cycling stability in single-crystal nickel-rich NCM cathode. Nano Lett. 21, 9997–10005.
Ryu, H. H., Park, K. J., Yoon, D. R., Aishova, A., Yoon, C. S., Sun, Y. K. (2019). Li[Ni0.9Co0.09W0.01]O2: A new type of layered oxide cathode with high cycling stability. Adv. Energy Mater. 9, 1902698.