With the exponential growth of portable electronic devices and wearable technologies, batteries are currently required to deliver not only high energy density and extended cycling performance but also enhanced safety and exceptional durability. Inspired by the self-repair mechanism observed in natural systems, a self-healing strategy shows great application potential in enabling batteries to resist external physical and chemical damage. In this review, we provide a detailed exploration of the application of self-healing materials in battery components, including electrodes, electrolytes, and encapsulation layers. We also analyze the advantages and limitations of various self-healing mechanisms, highlighting their roles in optimizing battery performance. By presenting a comprehensive synthesis of existing research, the potential pathways for advancing the development of self-healing batteries are identified, as well as the key challenges and opportunities within this field. This review aims to promote the practical integration of self-healing batteries in smart and flexible electronic devices, paving the way for safer, more reliable, and long-lasting energy storage systems.
Chan, M., Estève, D., Fourniols, J. Y., Escriba, C., Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 56, 137–156.
Yang, M., Cheng, Y. F., Yue, Y., Chen, Y., Gao, H., Li, L., Cai, B., Liu, W. J., Wang, Z. Y., Guo, H. Z. et al. (2022). High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9, 2200507.
Kim, J. J., Wang, Y., Wang, H. Y., Lee, S., Yokota, T., Someya, T. (2021). Skin electronics: Next-generation device platform for virtual and augmented reality. Adv. Funct. Mater. 31, 2009602.
Narayan, R., Laberty-Robert, C., Pelta, J., Tarascon, J. M., Dominko, R. (2022). Self-healing: An emerging technology for next-generation smart batteries. Adv. Energy Mater. 12, 2102652.
Khatib, M., Zohar, O., Haick, H. (2021). Self-healing soft sensors: From material design to implementation. Adv. Mater. 33, 2004190.
Chen, K., Sun, Y. X., Zhang, X. R., Liu, J., Xie, H. M. (2023). A self-healing and nonflammable cross-linked network polymer electrolyte with the combination of hydrogen bonds and dynamic disulfide bonds for lithium metal batteries. Energy Environ. Mater. 6, e12568.
He, Y. B., Wang, C. Y., Lin, R. Q., Hu, E. Y., Trask, S. E., Li, J., Xin, H. L. (2024). A self-healing, flowable, yet solid electrolyte suppresses Li-metal morphological instabilities. Adv. Mater. 36, 2406315.
Huang, Y., Huang, Y., Zhu, M. S., Meng, W. J., Pei, Z. X., Liu, C., Hu, H., Zhi, C. Y. (2015). Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242–6251.
Hu, R. F., Zhao, J., Wang, Y. H., Li, Z. X., Zheng, J. P. (2019). A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chem. Eng. J. 360, 334–341.
Sharma, A., Rawat, K., Solanki, P. R., Bohidar, H. B. (2017). Self-healing gelatin ionogels. Int. J. Biol. Macromol. 95, 603–607.
Yang, J. F., Zhang, L. C., Zhang, T., Wang, X. P., Gao, Y. X., Fang, Q. F. (2018). Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries. Electrochem. Commun. 87, 22–26.
Chen, H., Wu, Z. Z., Su, Z., Chen, S., Yan, C., Al-Mamun, M., Tang, Y. B., Zhang, S. Q. (2021). A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81, 105654.
Jiao, X. X., Yin, J. Q., Xu, X. Y., Wang, J. L., Liu, Y. Y., Xiong, S. Z., Zhang, Q. L., Song, J. X. (2021). Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv. Funct. Mater. 31, 2005699.
Wang, S. Y., Urban, M. W. (2020). Self-healing polymers. Nat. Rev. Mater. 5, 562–583.
Utrera-Barrios, S., Verdejo, R., López-Manchado, M. A., Santana, M. H. (2020). Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review. Mater. Horiz. 7, 2882–2902.
Pena-Francesch, A., Jung, H., Demirel, M. C., Sitti, M. (2020). Biosynthetic self-healing materials for soft machines. Nat. Mater. 19, 1230–1235.
Cheng, Y., Xiao, X., Pan, K. M., Pang, H. (2020). Development and application of self-healing materials in smart batteries and supercapacitors. Chem. Eng. J. 380, 122565.
Wang, H., Wang, P. P., Feng, Y. P., Liu, J., Wang, J. Q., Hu, M. M., Wei, J., Huang, Y. (2019). Recent advances on self-healing materials and batteries. ChemElectroChem 6, 1605–1622.
Ezeigwe, E. R., Dong, L., Manjunatha, R., Tan, M., Yan, W., Zhang, J. J. (2021). A review of self-healing electrode and electrolyte materials and their mitigating degradation of Lithium batteries. Nano Energy 84, 105907.
Zhao, Y., Zhang, Y., Sun, H., Dong, X. L., Cao, J. Y., Wang, L., Xu, Y. F., Ren, J., Hwang, Y., Son, I. H., et al. (2016). A self-healing aqueous lithium-ion battery. Angew. Chem. Int. Ed. 55, 14384–14388.
Wang, Z. K., Pan, Q. M. (2017). An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks. Adv. Funct. Mater. 27, 1700690.
Huang, Y., Liu, J., Wang, J. Q., Hu, M. M., Mo, F. N., Liang, G. J., Zhi, C. Y. (2018). An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem. Int. Ed. 57, 9810–9813.
Huang, S., Wan, F., Bi, S. S., Zhu, J. C., Niu, Z. Q., Chen, J. (2019). A self-healing integrated all-in-one zinc-ion battery. Angew. Chem. Int. Ed. 58, 4313–4317.
Ji, Z. Y., Wang, H., Chen, Z., Wang, P. P., Liu, J., Wang, J. Q., Hu, M. M., Fei, J. B., Nie, N. Y., Huang, Y. (2020). A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Storage Mater. 28, 334–341.
Chen, M. F., Chen, J. Z., Zhou, W. J., Han, X., Yao, Y. G., Wong, C. P. (2021). Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33, 2007559.
Jin, X. T., Song, L., Dai, C. L., Ma, H. Y., Xiao, Y. K., Zhang, X. Q., Han, Y. Y., Li, X. Y., Zhang, J. T., Zhao, Y., et al. (2022). A self-healing zinc ion battery under −20 °C. Energy Storage Mater. 44, 517–526.
Gu, C. N., Wang, M. K., Zhang, K. H., Li, J. J., Lu, Y. L., Cui, Y. H., Zhang, Y. F., Liu, C. S. (2023). A full-device autonomous self-healing stretchable soft battery from self-bonded eutectogels. Adv. Mater. 35, 2208392.
Pei, F., Wu, L., Zhang, Y., Liao, Y. Q., Kang, Q., Han, Y., Zhang, H. W., Shen, Y., Xu, H. H., Li, Z., et al. (2024). Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 15, 351.
Li, B. R., Cao, P. F., Saito, T., Sokolov, A. P. (2023). Intrinsically self-healing polymers: From mechanistic insight to current challenges. Chem. Rev. 123, 701–735.
Perera, M. M., Ayres, N. (2020). Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym. Chem. 11, 1410–1423.
Behera, P. K., Mohanty, S., Gupta, V. K. (2021). Self-healing elastomers based on conjugated diolefins: A review. Polym. Chem. 12, 1598–1621.
Liu, J. H., Urban, M. W. (2024). Dynamic interfaces in self-healable polymers. Langmuir 40, 7268–7285.
Aguirresarobe, R. H., Nevejans, S., Reck, B., Irusta, L., Sardon, H., Asua, J. M., Ballard, N. (2021). Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci. 114, 101362.
Preman, A. N., Lee, H., Yoo, J., Kim, I. T., Saito, T., Ahn, S. K. (2020). Progress of 3D network binders in silicon anodes for lithium ion batteries. J. Mater. Chem. A. 8, 25548–25570.
Mahadevi, A. S., Sastry, G. N. (2016). Cooperativity in noncovalent interactions. Chem. Rev. 116, 2775–2825.
Yang, J. Y., Chen, Y., Zhao, L., Zhang, J. H., Luo, H. (2023). Constructions and properties of physically cross-linked hydrogels based on natural polymers. Polym. Rev. 63, 574–612.
Burattini, S., Greenland, B. W., Merino, D. H., Weng, W. G., Seppala, J., Colquhoun, H. M., Hayes, W., Mackay, M. E., Hamley, I. W., Rowan, S. J. (2010). A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132, 12051–12058.
Herbst, F., Döhler, D., Michael, P., Binder, W. H. (2013). Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 34, 203–220.
Deng, K. R., Zhou, S. P., Xu, Z. L., Xiao, M., Meng, Y. Z. (2022). A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chem. Eng. J. 428, 131224.
Xu, Y. S., Li, Y. S., Chen, Q. M., Fu, L. H., Tao, L., Wei, Y. (2018). Injectable and self-healing chitosan hydrogel based on imine bonds: Design and therapeutic applications. Int. J. Mol. Sci. 19, 2198.
Rekondo, A., Martin, R., De Luzuriaga, A. R., Cabañero, G., Grande, H. J., Odriozola, I. (2014). Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 1, 237–240.
Hao, Z. H., Tao, F., Wang, Z. K., Cui, X. M., Pan, Q. M. (2018). An omni-healable and tailorable aqueous lithium-ion battery. ChemElectroChem 5, 637–642.
Teki, R., Datta, M. K., Krishnan, R., Parker, T. C., Lu, T. M., Kumta, P. N., Koratkar, N. (2009). Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 5, 2236–2242.
Szczech, J. R., Jin, S. (2011). Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72.
Graetz, J., Ahn, C. C., Yazami, R., Fultz, B. (2003). Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194.
Zhang, B. W., Ren, L., Wang, Y. X., Xu, X., Du, Y., Dou, S. X. (2022). Gallium-based liquid metals for lithium-ion batteries. Interdiscip. Mater. 1, 354–372.
Ponnuru, H., Marriam, I., Rambukwella, I., Zheng, J. C., Yan, C. (2024). Recent advances in liquid metals for rechargeable batteries. Adv. Funct. Mater. 34, 2309706.
Bilodeau, R. A., Kramer, R. K. (2017). Self-healing and damage resilience for soft robotics: A review. Front. Robot. AI 4, 48.
Wang, X. L., Wang, B., Cheng, J. L. (2023). Multi-healable, mechanically durable double cross-linked polyacrylamide electrolyte incorporating hydrophobic interactions for dendrite-free flexible zinc-ion batteries. Adv. Funct. Mater. 33, 2304470.
Liu, J. Y., Long, J. W., Shen, Z. H., Jin, X., Han, T. L., Si, T., Zhang, H. G. (2021). A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes. Adv. Sci. 8, 2004689.
Shen, X. H., Tian, Z. Y., Fan, R. J., Shao, L., Zhang, D. P., Cao, G. L., Kou, L., Bai, Y. Z. (2018). Research progress on silicon/carbon composite anode materials for lithium-ion battery. J. Energy Chem. 27, 1067–1090.
Malik, Y. T., Shin, S. Y., Jang, J. I., Kim, H. M., Cho, S., Do, Y. R., Jeon, J. W. (2023). Self-repairable silicon anodes using a multifunctional binder for high-performance lithium-ion batteries. Small 19, 2206141.
Cao, J., Lu, C. H., Zhuang, J., Liu, M. X., Zhang, X. X., Yu, Y. M., Tao, Q. C. (2017). Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew. Chem. Int. Ed. 56, 8795–8800.
Li, R., Fan, T., Chen, G. X., Xie, H. J., Su, B., He, M. H. (2020). Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chem. Eng. J. 393, 124685.
Jeong, Y. K., Choi, J. W. (2019). Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes. ACS Nano 13, 8364–8373.
Yuca, N., Kalafat, I., Guney, E., Cetin, B., Taskin, O. S. (2022). Self-healing systems in silicon anodes for li-ion batteries. Materials 15, 2392.
Rehman, W. U., Manj, R. Z. A., Ma, Y. Y., Yang, J. P. (2024). The promising potential of gallium based liquid metals for energy storage. ChemPlusChem 89, e202300767.
Zhang, L. Y., Xia, X. H., Zhong, Y., Xie, D., Liu, S. F., Wang, X. L., Tu, J. P. (2018). Exploring self-healing liquid Na–K alloy for dendrite-free electrochemical energy storage. Adv. Mater. 30, 1804011.
Guo, X. L., Ding, Y., Xue, L. G., Zhang, L. Y., Zhang, C. K., Goodenough, J. B., Yu, G. H. (2018). A self-healing room-temperature liquid-metal anode for alkali-ion batteries. Adv. Funct. Mater. 28, 1804649.
Hou, Y. F., Wang, F. Y., Qin, C. C., Wu, S. N., Cao, M. Y., Yang, P. K., Huang, L., Wu, Y. P. (2022). A self-healing electrocatalytic system via electrohydrodynamics induced evolution in liquid metal. Nat. Commun. 13, 7625.
Xu, J. H., Ding, C. D., Chen, P., Tan, L. H., Chen, C. B., Fu, J. J. (2020). Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Appl. Phys. Rev. 7, 031304.
Zhou, Y., Li, L., Han, Z. B., Li, Q., He, J. L., Wang, Q. (2022). Self-healing polymers for electronics and energy devices. Chem. Rev. 123, 558–612.
Chen, Z., Zhang, H. R., Dong, T. T., Mu, P. Z., Rong, X. C., Li, Z. T. (2020). Uncovering the chemistry of cross-linked polymer binders via chemical bonds for silicon-based electrodes. ACS Appl. Mater. Interfaces 12, 47164–47180.
Eshetu, G. G., Figgemeier, E. (2019). Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: Role of designer electrolyte additives and polymeric binders. ChemSusChem 12, 2515–2539.
Deng, L., Zheng, Y., Zheng, X. M., Or, T., Ma, Q. Y., Qian, L. T., Deng, Y. P., Yu, A. P., Li, J. T., Chen, Z. W. (2022). Design criteria for silicon-based anode binders in half and full cells. Adv. Energy Mater. 12, 2200850.
Liu, Q., Zhou, D., Shanmukaraj, D., Li, P., Kang, F. Y., Li, B. H., Armand, M., Wang, G. X. (2020). Self-healing Janus interfaces for high-performance LAGP-based lithium metal batteries. ACS Energy Lett. 5, 1456–1464.
Gao, R. H., Zhang, Q., Zhao, Y., Han, Z. Y., Sun, C. B., Sheng, J. Z., Zhong, X. W., Chen, B., Li, C., Ni, S. Y., et al. (2022). Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 32, 2110313.
Murata, K., Izuchi, S., Yoshihisa, Y. (2000). An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 45, 1501–1508.
Agrawal, R. C., Pandey, G. P. (2008). Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D: Appl. Phys. 41, 223001.
Ngai, K. S., Ramesh, S., Ramesh, K., Juan, J. C. (2016). A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 22, 1259–1279.
Long, L. Z., Wang, S. J., Xiao, M., Meng, Y. Z. (2016). Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069.
Marinow, A., Katcharava, Z., Binder, W. H. (2023). Self-healing polymer electrolytes for next-generation lithium batteries. Polymers 15, 1145.
Pan, Y. Y., Gao, S. L., Sun, F. Y., Yang, H. B., Cao, P. F. (2019). Polymer binders constructed through dynamic noncovalent bonds for high-capacity silicon-based anodes. Chem.-Eur. J. 25, 10976–10994.
Xu, Z. X., Yang, J., Li, H. P., Nuli, Y., Wang, J. L. (2019). Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A 7, 9432–9446.
Huang, S., Ren, J. G., Liu, R., Yue, M., Huang, Y. Y., Yuan, G. H. (2018). The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries. Int. J. Energy Res. 42, 919–935.
Wu, N., Shi, Y. R., Lang, S. Y., Zhou, J. M., Liang, J. Y., Wang, W., Tan, S. J., Yin, Y. X., Wen, R., Guo, Y. G. (2019). Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew. Chem. Int. Ed. 58, 18146–18149.
Jing, B. B., Evans, C. M. (2019). Catalyst-free dynamic networks for recyclable, self-healing solid polymer electrolytes. J. Am. Chem. Soc. 141, 18932–18937.
Liao, H. Y., Zhong, W. Z., Li, T., Han, J. L., Sun, X., Tong, X. L., Zhang, Y. Q. (2022). A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochim. Acta 404, 139730.
Ma, W. T., Wan, S., Cui, X. R., Hou, G. L., Xiao, Y., Rong, J. F., Chen, S. M. (2023). Exploration and application of self-healing strategies in lithium batteries. Adv. Funct. Mater. 33, 2212821.
Cheng, X. L., Pan, J., Zhao, Y., Liao, M., Peng, H. S. (2018). Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8, 1702184.
Wang, Z. F., Li, H. F., Tang, Z. J., Liu, Z. X., Ruan, Z. H., Ma, L. T., Yang, Q., Wang, D. H., Zhi, C. Y. (2018). Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560.
Weng, G., Yang, X. Z., Wang, Z. Q., Xu, Y., Liu, R. Y. (2023). Hydrogel electrolyte enabled high-performance flexible aqueous zinc ion energy storage systems toward wearable electronics. Small 19, 2303949.
Huang, S., Zhu, J. C., Tian, J. L., Niu, Z. Q. (2019). Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem.-Eur. J. 25, 14480–14494.
Jaumaux, P., Wu, J. R., Shanmukaraj, D., Wang, Y. Z., Zhou, D., Sun, B., Kang, F. Y., Li, B. H., Armand, M., Wang, G. X. (2021). Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31, 2008644.
Sultana, S., Ahmed, K., Jiwanti, P. K., Wardhana, B. Y., Shiblee, M. N. I. (2021). Ionic liquid-based gels for applications in electrochemical energy storage and conversion devices: A review of recent progress and future prospects. Gels 8, 2.
Song, T. T., Jiang, B. J., Li, Y. D., Ji, Z. H., Zhou, H. L., Jiang, D. W., Seok, I., Murugadoss, V., Wen, N., Colorado, H. (2021). Self-healing materials: A review of recent developments. ES Mater. Manuf. 14, 1–19.
Chen, X. Y., Yi, L. G., Zou, C. F., Liu, J. L., Yang, L., Zang, Z. H., Tao, X. Y., Luo, Z. G., Chang, B. B., Shen, Y. Q., et al. (2023). Boosting the performances of lithium metal batteries through in-situ construction of dual-network self-healing gel polymer electrolytes. Electrochim. Acta 446, 142084.
Sun, F. Y., Kim, K. S., Eom, S. Y., Choi, J. W., Kim, E. J., Raheem, A. A., Jeon, S. P., Seong, D. G., Ahn, S. K., Park, S. K., et al. (2024). Stretchable interconnected modular electrochromic devices enabled by self-healing, self-adhesive, and ion-conducting polymer electrolyte. Chem. Eng. J. 494, 153107.
Wei, Z., Yang, J. H., Zhou, J. X., Xu, F., Zrínyi, M., Dussault, P. H., Osada, Y., Chen, Y. M. (2014). Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43, 8114–8131.
Rosu-Finsen, A. (2023). Battered and bruised, but not broken. Nat. Rev. Chem. 7, 72–72.
Tamate, R., Hashimoto, K., Horii, T., Hirasawa, M., Li, X., Shibayama, M., Watanabe, M. (2018). Self-healing micellar ion gels based on multiple hydrogen bonding. Adv. Mater. 30, 1802792.
Cao, Y., Morrissey, T. G., Acome, E., Allec, S. I., Wong, B. M., Keplinger, C., Wang, C. (2017). A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099.
Chen, T., Kong, W. H., Zhang, Z. W., Wang, L., Hu, Y., Zhu, G. Y., Chen, R. P., Ma, L. B., Yan, W., Wang, Y. R., et al. (2018). Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54, 17–25.
Kirchner, B., Malberg, F., Firaha, D. S., Hollóczki, O. (2015). Ion pairing in ionic liquids. J. Phys.: Condens. Matter 27, 463002.
Choudhury, N. A., Sampath, S., Shukla, A. K. (2009). Hydrogel-polymer electrolytes for electrochemical capacitors: An overview. Energy Environ. Sci. 2, 55–67.
Zhao, S. Y., Zuo, Y. Y., Liu, T., Zhai, S., Dai, Y. W., Guo, Z. J., Wang, Y., He, Q. J., Xia, L. C., Zhi, C. Y., et al. (2021). Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 11, 2101749.
Taylor, D. L., In Het Panhuis, M. (2016). Self-healing hydrogels. Adv. Mater. 28, 9060–9093.
Liu, C. L., Fang, W. H., Cheng, Q. Q., Qiu, B. W., Shangguan, Y. G., Shi, J. G. (2024). Revolutionizing elastomer technology: Advances in reversible crosslinking, reprocessing, and self-healing applications. Polym. Rev. 2024, 1–44.
Cho, S., Hwang, S. Y., Oh, D. X., Park, J. (2021). Recent progress in self-healing polymers and hydrogels based on reversible dynamic B–O bonds: Boronic/boronate esters, borax, and benzoxaborole. J. Mater. Chem. A 9, 14630–14655.
Pattabiraman, V. R., Bode, J. W. (2011). Rethinking amide bond synthesis. Nature 480, 471–479.
Valeur, E., Bradley, M. (2009). Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev. 38, 606–631.
Mahadevi, A. S., Sastry, G. N. (2013). Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138.
Zhao, G. K., Zhu, H. W. (2020). Cation-π interactions in graphene-containing systems for water treatment and beyond. Adv. Mater. 32, 1905756.
Li, C. H., Zuo, J. L. (2020). Self-healing polymers based on coordination bonds. Adv. Mater. 32, 1903762.
Leng, K. T., Li, G. J., Guo, J. J., Zhang, X. Y., Wang, A. X., Liu, X. J., Luo, J. Y. (2020). A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 30, 2001317.
Liu, Q., Chen, R. P., Xu, L., Liu, Y., Dai, Y. H., Huang, M., Mai, L. (2022). Steric molecular combing effect enables ultrafast self-healing electrolyte in quasi-solid-state zinc-ion batteries. ACS Energy Lett. 7, 2825–2832.
Sani, N. F. M., Yee, H. J., Othman, N., Abd Talib, A., Shuib, R. K. (2022). Intrinsic self-healing rubber: A review and perspective of material and reinforcement. Polym. Test. 111, 107598.
Cordier, P., Tournilhac, F., Soulié-Ziakovic, C., Leibler, L. (2008). Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980.
Lee, W. J., Oh, H. G., Cha, S. H. (2021). A brief review of self-healing polyurethane based on dynamic chemistry. Macromol. Res. 29, 649–664.
Yao, Y., Xiao, M., Liu, W. G. (2021). A short review on self-healing thermoplastic polyurethanes. Macromol. Chem. Phys. 222, 2100002.
Scheiner, M., Dickens, T. J., Okoli, O. (2016). Progress towards self-healing polymers for composite structural applications. Polymer 83, 260–282.
Wang, D. H., Wang, L. F., Liang, G. J., Li, H. F., Liu, Z. X., Tang, Z. J., Liang, J. B., Zhi, C. Y. (2019). A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 13, 10643–10652.
Shi, C. Q., Zou, Z. N., Lei, Z. P., Zhu, P. C., Zhang, W., Xiao, J. L. (2020). Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Sci. Adv. 6, eabd0202.
Wang, X. Y., Zhao, M. Y., Zhang, L., Li, K., Wang, D., Zhang, L., Zhang, A. M., Xu, Y. (2022). Liquid metal bionic instant self-healing flexible electronics with full recyclability and high reliability. Chem. Eng. J. 431, 133965.
Li, Z., Guo, Y., Liu, X. K. (2024). Stretchable and self-healable lithium-ion batteries with all-in-one configuration. Supramol. Mater. 3, 100073.
Long, J. W., Han, T. L., Lin, X. R., Zhu, Y. J., Ding, Y. Y., Liu, J. Y., Zhang, H. G. (2023). An integrated flexible self-healing Zn-ion battery using dendrite-suppressible hydrogel electrolyte and free-standing electrodes for wearable electronics. Nano Res. 16, 11000–11011.