Lithium-ion batteries with LiCoO2 (LCO) cathodes are widely used in various electronic devices, resulting in a large amount of spent LCO (SLCO). Therefore, there is an urgent need for an efficient technique for recycling SLCO. However, due to the presence of cobalt oxide with a spinel phase on the surface of highly-degraded LCO, the strong electrostatic repulsion from the transition metal octahedron poses a high Li replenishment barrier, making the regeneration of highly-degraded LCO a challenge. Herein, we propose a structural transformation strategy for reconstructing Li replenishment channels to aid the direct regeneration of highly-degraded LCO. In this approach, ball milling is employed to disrupt the inherent structure of highly-degraded LCO, thereby releasing the internal stress and converting the surface spinel phase into a homogeneous amorphous structure, which promotes Li insertion and regeneration. The regenerated LCO (RLCO) exhibits an outstanding discharge capacity of 179.10 mAh·g−1 in the voltage range of 3.0–4.5 V at 0.5 C. The proposed strategy is an effective regeneration approach for highly-degraded LCO, thereby facilitating the efficient recycling of spent lithium-ion battery cathode materials.
Cao, Y., Li, J. F., Ji, H. C., Wei, X. J., Zhou, G. M., Cheng, H. M. (2024). A review of direct recycling methods for spent lithium-ion batteries. Energy Storage Mater. 70, 103475.
Wang, J. X., Ma, J., Zhuang, Z. F., Liang, Z., Jia, K., Ji, G. J., Zhou, G. M., Cheng, H. M. (2024). Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chem. Rev. 124, 2839–2887.
Turner, J. M. (2022). The matter of a clean energy future. Science 376, 1361–1361.
Bauer, C., Burkhardt, S., Dasgupta, N. P., Ellingsen, L. A. W., Gaines, L. L., Hao, H., Hischier, R., Hu, L. B., Huang, Y. H., Janek, J., et al. (2022). Charging sustainable batteries. Nat. Sustain. 5, 176–178.
Tang, D., Ji, G. J., Wang, J. X., Liang, Z., Chen, W., Ji, H. C., Ma, J., Liu, S., Zhuang, Z. F., Zhou, G. M. (2024). A multifunctional amino acid enables direct recycling of spent LiFePO4 cathode material. Adv. Mater. 36, 2309722.
Yang, M. X., Sun, X. F., Liu, R., Wang, L. Z., Zhao, F., Mei, X. S. (2024). Predict the lifetime of lithium-ion batteries using early cycles: A review. Appl. Energy 376, 124171
Feng, C. Z., Cao, Y., Song, L. X., Zhao, B., Yang, Q., Zhang, Y. P., Wei, X. J., Zhou, G. M., Song, Y. Z. (2025). Direct regeneration of industrial LiFePO4 black mass through a glycerol-enabled granule reconstruction strategy. Angew. Chem. Int. Ed. 64, e202418198.
Goodenough, J. B., Kim, Y. (2010). Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603.
Zheng, Z. Q., Xie, D., Liu, X. C., Huang, H., Zhang, M., Cheng, F. L. (2024). Regenerated Ni-doped LiCoO2 from spent lithium-ion batteries as a stable cathode at 4.5 V. ACS Appl. Mater. Interfaces 16, 31137–31144.
Chen, M. Y., Ma, X. T., Chen, B., Arsenault, R., Karlson, P., Simon, N., Wang, Y. (2019). Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646.
Ji, H. C., Wang, J. X, Ma, J., Cheng, H. M., Zhou, G. M. (2023). Fundamentals, status and challenges of direct recycling technologies for lithium-ion batteries. Chem. Soc. Rev. 52, 8194–8244.
Zhou, M. X., Li, B., Li, J., Xu, Z. M. (2021). Pyrometallurgical technology in the recycling of a spent lithium-ion battery: Evolution and the challenge. ACS EST Eng. 1, 1369–1382.
Ciez, R. E., Whitacre, J. F. (2019). Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156.
Zhuang, Z. F., Li, J. F., Ji, H. C., Piao, Z. H., Wu, X. R., Ji, G. J., Liu, S., Ma, J., Tang, D., Zheng, N. Z., et al. (2024). Fast Li replenishment channels-assisted recycling of degraded layered cathodes with enhanced cycling performance and thermal stability. Adv. Mater. 36, 2313144.
Shi, R. Y., Zheng, N. Z., Ji, H. C., Zhang, M. T., Xiao, X., Ma, J., Chen, W., Wang, J. X., Cheng, H. M., Zhou, G. M. (2024). Homogeneous repair of highly degraded Ni-rich cathode material with spent lithium anode. Adv. Mater. 36, 2311553.
Ji, G. J., Wang, J. X., Liang, Z., Jia, K., Ma, J., Zhuang, Z. F., Zhou, G. M., Cheng, H. M. (2023). Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 14, 584.
Zhuang, Z. F., Wang, J. X., Jia, K., Ji, G. J., Ma, J., Han, Z. Y., Piao, Z. H., Gao, R. H., Ji, H. C., Zhong, X. W., et al. (2023). Ultrahigh‐voltage LiCoO2 at 4.7 V by interface stabilization and band structure modification. Adv. Mater. 35, 2212059.
Wang, J. X., Zhang, Q., Sheng, J. Z., Liang, Z., Ma, J., Chen, Y. M., Zhou, G. M., Cheng, H. M. (2022). Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries. Natl. Sci. Rev. 9, nwac097.
Yang, Z. J., Huang, H. B., Lin, F. (2022). Sustainable electric vehicle batteries for a sustainable world: Perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy. Adv. Energy Mater. 12, 2200383.
Duffner, F., Kronemeyer, N., Tübke, J., Leker, J., Winter, M., Schmuch, R. (2021). Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134.
Wang, J. X. Jia, K., Ma, J., Liang, Z., Zhuang, Z. F., Zhao, Y., Li, B. H., Zhou, G. M., Cheng, H. M. (2023). Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage. Nat. Sustain. 6, 797–805.
Kong, L. Y., Li, Z., Zhu, W. H., Ratwani, C. R., Fernando, N., Karunarathne, S., Abdelkader, A. M., Kamali, A. R., Shi, Z. N. (2023). Sustainable regeneration of high-performance LiCoO2 from completely failed lithium-ion batteries. J. Colloid Interface Sci. 640, 1080–1088.
Fei, Z. T., Zhou, S. Y., Zhang, Y. J., Meng, Q., Dong, P., Li, Y., Fei, J. F., Qi, H. B., Yan, J., Zhao, X. H. (2022). Toward high voltage performance of LiCoO2 cathode materials directly regenerated with a bulk and surface synergistic approach from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 10, 6853–6862.
Wang, J. X., Liang, Z., Zhao, Y., Sheng, J. Z., Ma, J., Jia, K., Li, B. H., Zhou, G. M., Cheng, H. M. (2022). Direct conversion of degraded LiCoO2 cathode materials into high-performance LiCoO2: A closed-loop green recycling strategy for spent lithium-ion batteries. Energy Storage Mater. 45, 768–776.
Liu, Z. Z., Han, M. M., Zhang, S. B., Li, H. M., Wu, X., Fu, Z., Zhang, H. M., Wang, G. Z., Zhang, Y. X. (2024). Hybrid surface modification and bulk doping enable spent LiCoO2 cathodes for high-voltage operation. Adv. Mater. 36, 2404188.
Shi, Y., Chen, G., Chen, Z. (2018). Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles. Green Chem. 20, 851–862.
Zhang, N. J., Deng, W. J., Xu, Z. X., Wang, X. L. (2023). Upcycling of spent LiCoO2 cathodes via nickel‐ and manganese-doping. Carbon Energy 5, e231.
Lei, H., Zeng, Z. H., Li, J. X., Cui, X. W., Wang, B., Shi, Y. K., Sun, W., Ji, X. B., Yang, Y., Ge, P. (2024). Homogenization and upcycling of hetero spent LiCoO2 cathodes: Rational introduction of Li/Co anti-sites toward enhanced high-voltage stability. Adv. Funct. Mater. 34, 2402325.
Wang, J. X., Ma, J., Jia, K., Liang, Z., Ji, G. J., Zhao, Y., Li, B. H., Zhou, G. M., Cheng, H. M. (2022). Efficient extraction of lithium from anode for direct regeneration of cathode materials of spent Li-ion batteries. ACS Energy Lett. 7, 2816–2824.
Fan, E. S., Lin, J., Zhang, X. D., Chen, R. J., Wu, F., Li, L. (2021). Resolving the structural defects of spent Li1− x CoO2 particles to directly reconstruct high voltage performance cathode for lithium-ion batteries. Small Methods 5, 2100672.
Cao, Y., Li, J. F., Tang, D., Zhou, F., Yuan, M. W., Zhu, Y. F., Feng, C. Z., Shi, R. Y., Wei, X. J., Wang, B. R., et al. (2024). Targeted defect repair and multi-functional interface construction for the direct regeneration of spent LiFePO4 cathodes. Adv. Mater. 36, 2414048.
Wang, R., Chen, X., Huang, Z. Y., Yang, J. L., Liu, F. S., Chu, M. H., Liu, T. C., Wang, C. Q., Zhu, W. M., Li, S. K., et al. (2021). Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nat. Commun. 12, 3085.
Romadina, E. I., Komarov, D. S., Stevenson, K. J., Troshin, P. A. (2021). New phenazine based anolyte material for high voltage organic redox flow batteries. Chem. Commun. 57, 2986–2989.
Jia, K., Ma, J., Wang, J. X., Liang, Z., Ji, G. J., Piao, Z. H., Gao, R. H., Zhu, Y. F., Zhuang, Z. F., Zhou, G. M., et al. (2023). Long-life regenerated LiFePO4 from spent cathode by elevating the d‐band center of Fe. Adv. Mater. 35, 2208034.