With the boom in electric vehicles (EVs), there is an increasing demand for high-performance lithium-ion batteries. Lithium manganese iron phosphate (LMFP) has emerged as an enhanced variation of LiFePO4 (LFP), offering an energy density 10%–20% greater than that of LFP. Structural distortion caused by the Jahn–Teller effect decreases the capacity and voltage platform, thus restricting the commercialization of this material. Herein, ideas to overcome these challenges, including the crystal structure of LMFP and strategies to mitigate the Jahn–Teller distortion, are first explored. Then, the migration pathways of Li+ during charging and discharging and the phase transition mechanisms that affect the material’s performance are discussed. Next, the optimal Mn:Fe ratio for achieving the desired performance is described. The influences of various synthesis and modification methods on the morphology and structure of LMFP are reviewed. Additionally, different modification techniques, such as doping and coating, to enhance the performance of LMFP are highlighted. Finally, an overview of the current state of research on the recycling and reuse of LMFP is provided. By addressing these key topics, this paper offers a theoretical foundation for the further development of LMFP, thus contributing to its eventual commercialization.
Armand, M., Tarascon, J. M. (2008). Building better batteries. Nature 451, 652–657.
Wang, J. X., Ma, J., Zhuang, Z. F., Liang, Z., Jia, K., Ji, G. J., Zhou, G. M., Cheng, H. M. (2024). Toward direct regeneration of spent lithium-ion batteries: A next-generation recycling method. Chem. Rev. 124, 2839–2887.
Padhi, A. K., Nanjundaswamy, K. S., Goodenough, J. B. (1997). Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194.
Yamada, A., Chung, S. C. (2001). Crystal chemistry of the olivine-type Li (Mn y Fe1− y )PO4 and (Mn y Fe1− y )PO4 as possible 4 V cathode materials for lithium batteries. J. Electrochem. Soc. 148, A960–A967.
Yamada, A., Chung, S. C., Hinokuma, K. (2001). Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229.
Yang, J. S., Xu, J. J. (2006). Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol–gel route. J. Electrochem. Soc. 153, A716–A723.
Yamada, A., Kudo, Y., Liu, K. Y. (2001). Reaction mechanism of the olivine-type Li x (Mn0.6Fe0.4)PO4 (0 ≤ x ≤ 1). J. Electrochem. Soc. 148, A747.
Wang, L., Li, Y., Wang, Y. K., Zhang, H., Dai, Y. N., Yao, Y. C., Liang, F. (2021). Effect of vacuum assistance on the morphology and electrochemical properties of LiMn0.2Fe0.8PO4/C composites prepared by solid-phase method. Electrochim. Acta 369, 137675.
Alfaruqi, M. H., Kim, S., Park, S., Lee, S., Lee, J., Hwang, J. Y., Sun, Y. K., Kim, J. (2020). Density functional theory investigation of mixed transition metals in olivine and tavorite cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 12, 16376–16386.
Zhong, K. F., Yang, Q., Tong, Y., Zhang, W. T., Cai, X. H., Wang, M. (2023). Theoretical studies of the dissociation of Mn atoms on different crystal surfaces of LiMn0.5Fe0.5PO4. Chem. Phys. 575, 112083.
Kwon, D., Kim, D. (2024). Machine learning interatomic potentials in engineering perspective for developing cathode materials. J. Mater. Chem. A 12, 23837–23847.
Islam, M. S., Driscoll, D. J., Fisher, C. A. J., Slater, P. R. (2005). Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 17, 5085–5092.
Rousse, G., Rodriguez-Carvajal, J., Patoux, S., Masquelier, C. (2003). Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chem. Mater. 15, 4082–4090.
Li, Y. L., Xu, Z. H., Zhang, X. Y., Wu, Z. Y., Zhou, J. E., Zhang, J. J., Lin, X. M. (2023). Tuning the electrochemical behaviors of N-doped LiMn x Fe1– x PO4/C via cation engineering with metal-organic framework-templated strategy. J. Energy Chem. 85, 239–253.
Churikov, A. V., Ivanishchev, A. V., Ushakov, A. V., Gamayunova, I. M., Leenson, I. A. (2013). Thermodynamics of LiFePO4 solid-phase synthesis using iron(II) oxalate and ammonium dihydrophosphate as precursors. J. Chem. Eng. Data 58, 1747–1759.
Wang, Y., Liu, J. H., Chen, T. W., Lin, W. C., Zheng, J. X. (2022). Factors that affect volume change during electrochemical cycling in cathode materials for lithium ion batteries. Phys. Chem. Chem. Phys. 24, 2167–2175.
Zhang, D. X., Wang, J., Dong, K. Z., Hao, A. M. (2018). First principles investigation on the elastic and electronic properties of Mn, Co, Nb, Mo doped LiFePO4. Comput. Mater. Sci. 155, 410–415.
Jiang, F., Qu, K., Wang, M. S., Chen, J. C., Liu, Y., Xu, H., Huang, Y., Li, J. Y., Gao, P., Zheng, J. M., et al. (2020). Atomic scale insight into the fundamental mechanism of Mn doped LiFePO4. Sustain. Energy Fuels 4, 2741–2751.
Morgan, D., van der Ven, A., Ceder, G. (2004). Li conductivity in Li x MPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 7, A30–A32.
Zhang, W., Du, F. Y., Dai, Y., Zheng, J. C. (2023). Strain engineering of Li+ ion migration in olivine phosphate cathode materials LiMPO4 (M = Mn, Fe, Co) and (LiFePO4) n (LiMnPO4) m superlattices. Phys. Chem. Chem. Phys. 25, 6142–6152.
Li, Y. H., Jiang, W. W., Ding, G. Y., Yan, F. Q., Jing, X. G., Zhu, Z., Gao, Y., Wu, L. L., Xu, G. J., Sun, F. G. (2021). Hierarchically porous LiMn0.1Fe0.9PO4@C microspherical cathode materials prepared by a facile template-free hydrothermal method for high-performance lithium-ion batteries. J. Alloys Compd. 859, 157825.
Yao, J., Bewlay, S., Konstantionv, K., Drozd, V. A., Liu, R. S., Wang, X. L., Liu, H. K., Wang, G. X. (2006). Characterisation of olivine-type LiMn x Fe1− x PO4 cathode materials. J. Alloys Compd. 425, 362–366.
Andersson, A. S., Thomas, J. O., Kalska, B., Häggström, L. (1999). Thermal stability of LiFePO4-based cathodes. Electrochem. Solid-State Lett. 3, 66–68.
Zhang, B., Wang, L., Zhang, H., Xu, H., He, X. M. (2022). Revelation of the transition-metal doping mechanism in lithium manganese phosphate for high performance of lithium-ion batteries. Battery Energy 1, 20220020.
Molenda, J., Ojczyk, W., Świerczek, K., Zając, W., Krok, F., Dygas, J., Liu, R. S. (2006). Diffusional mechanism of deintercalation in LiFe1− y Mn y PO4 cathode materia. Solid State Ionics 177, 2617–2624.
Xu, Y. N., Ching, W. Y., Chiang, Y. M. (2004). Comparative studies of the electronic structure of LiFePO4, FePO4, Li3PO4, LiMnPO4, LiCoPO4, and LiNiPO4. J. Appl. Phys. 95, 6583–6585.
Yan, S. Y., Wang, C. Y., Gu, R. M., Sun, S., Li, M. W. (2015). Synergetic fe substitution and carbon connection in LiMn1− x Fe x PO4/C cathode materials for enhanced electrochemical performances. J. Alloys Compd. 628, 471–479.
Kim, D., Lee, S., Choi, W. (2024). Boosting both electronic and ionic conductivities via incorporation of molybdenum for LiFe0.5Mn0.5PO4 cathode in lithium-ion batteries. J. Alloys Compd. 989, 174396.
Zeng, T. T., Gao, P., Zhou, Z. Y., Fan, C. L., Liu, Z. X., Zhang, F. Q., Liu, J. S., Liu, J. L. (2024). Superior electronic/ionic kinetics of LiMn0.8Fe0.2PO4@C nanoparticles cathode by doping strategy toward enhanced Li-ion storage. Energy Stor. Mater. 65, 103125.
Zhang, Q. D., Liu, Y. Y., Chang, C. K., Zheng, J. N. (2024). Modulating the lattice structure via Cr3+ doping in LiFe0.4Mn0.6PO4 cathode for improved rate behavior and promoted cyclic performance. J. Energy Storage 101, 113799.
Sin, B. C., Lee, S. U., Jin, B. S., Kim, H. S., Kim, J. S., Lee, S. I., Noh, J., Lee, Y. (2014). Experimental and theoretical investigation of fluorine substituted LiFe0.4Mn0.6PO4 as cathode material for lithium rechargeable batteries. Solid State Ionics 260, 2–7.
Fan, R. Z., Fan, C. L., Hu, Z., Zeng, T. T., Zhang, W. H., Han, S. C., Liu, J. S. (2021). Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium-ion batteries. J. Alloys Compd. 876, 160090.
Zhang, B. Q., Wang, S. Z., Liu, L., Liu, W., Wang, J. L., Yang, J. Q., Li, Y. H. (2022). One-pot solvothermal synthesis of S-doped LiMn0.5Fe0.5PO4@N/S-doped C core-shell structured composites for lithium-ion batteries. Mater. Lett. 323, 132586.
Tu, W. H., Chen, Z. W., Cao, Y. P., Duan, J. G., He, J. J., Li, R. L., Dong, P., Wang, X. S., Zhang, Y. J., Wang, D. (2024). Hydrothermal synthesize of bi-functional interface structure modified LiMnPO4@LiFePO4/C nanorods as cathode materials for lithium-ion batteries. J. Power Sources 613, 234919.
Song, Z. Y., Chen, S. L., Du, S., Fan, C. L. (2022). Construction of high-performance LiMn0.8Fe0.2PO4/C cathode by using quinoline soluble substance from coal pitch as carbon source for lithium ion batteries. J. Alloys Compd. 927, 166921.
Li, Z., You, Y., Zhu, Z. Q., Wang, L. H., Ou, S. W., Xu, J. Y., Yuan, M. L. (2025). Surface iron concentration gradient: A strategy to suppress Mn3+ Jahn–Teller effect in lithium manganese iron phosphate. Appl. Surf. Sci. 682, 161689.
Nazarov, E. E., Dembitskiy, A. D., Trussov, I. A., Tyablikov, O. A., Glazkova, I. S., Alexey, S. V., Presniakov, I. A., Morozov, A. V., Mikheev, I. V., Nikitina, V. A., et al. (2023). A Li-rich strategy towards advanced Mn-doped triphylite cathodes for Li-ion batteries. Energy Adv. 2, 328–337.
Yang, J. X., Li, C. J., Guang, T. J., Zhang, H., Li, Z. J., Fan, B. B., Ma, Y. H., Zhu, K. J., Wang, X. H. (2021). Zero lithium miscibility gap enables high-rate equimolar Li(Mn, Fe)PO4 solid solution. Nano Lett. 21, 5091–5097.
Lyu, W., Cai, W. L., Wang, T., Sun, X. B., Xu, E. H., Chen, J. X., Wu, K. P., Zhang, Y. (2024). Thermodynamic equilibrium theory-guided design and synthesis of Mg-doped LiFe0.4Mn0.6PO4/C cathode for lithium-ion batteries. J. Energy Chem. 91, 619–627.
Liu, J. L., Wu, Y. Q., Zhang, B., Xiao, X., Hu, Q., Han, Q. F., Wang, L., Bei, F. L., He, X. M. (2024). A Promising solid-state synthesis of LiMn1- y Fe y PO4 cathode for lithium-ion batteries. Small 20, e2309629.
Hu, Q., Wang, L., Han, G. M., Liao, J. Y., Liu, J. L., Yao, J. F., He, X. M. (2024). Revealing the voltage decay of LiMn0.7Fe0.3PO4 cathodes over cycling. Nano Energy 123, 109422.
Jin, H. B., Zhang, J. H., Qin, L., Hu, Y. J., Jiang, H., Li, C. Z. (2023). Dual modification of olivine LiFe0.5Mn0.5PO4 cathodes with accelerated kinetics for high-rate lithium-ion batteries. Ind. Eng. Chem. Res. 62, 1029–1034.
Zeng, T. T., Liu, D. H., Fan, C. L., Fan, R. Z., Zhang, F. Q., Liu, J. S., Yang, T. Z., Chen, Z. W. (2023). LiMn0.8Fe0.2PO4@C cathode prepared via a novel hydrated MnHPO4 intermediate for high performance lithium-ion batteries. Inorg. Chem. Front. 10, 1164–1175.
Li, C. L., Yu, X., Liao, C. J., Cui, Z., Zhu, J. Q., Gao, M. L., Wang, W. Q., Weng, F. M., Zou, R. J., Liu, Q. (2024). Surface modification engineering enabling LiMn x Fe1− x PO4 cathode against aggressive cathode chemistries for excellent performance lithium‐ion batteries. ChemNanoMat 10, e202300558.
Wang, Y., Yong, F. B., Wang, Z. H., Wang, M., Peng, Q., Zhao, M., Chen, Z., Huang, Q., Yang, S. S., Yu, F. Q. (2024). LiMn0.8Fe0.2PO4/C nanoparticles via polystyrene template carburizing enhance the rate capability and capacity reversibility of cathode materials. ACS Appl. Nano Mater. 7, 4024–4034.
Chang, L. J., Wei, A. L., Bi, X. L., Cai, K. D., Yang, W., Yang, R. F. (2023). Study on the preparation of LiMn1- x Fe x PO4/C from pyrolusite based on first-principles and its electrochemical properties. Ceram. Int. 49, 35757–35772.
Guo, H., Wu, C. Y., Xie, J., Zhang, S. C., Cao, G. S., Zhao, X. B. (2014). Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process. J. Mater. Chem. A 2, 10581–10588.
Hou, H. Y., Ye, M., Lan, J., Yu, X. H., Rong, J., Jia, Y. P., Wang, Y. X., Liu, X. X. (2024). High Li-storage performances of LiMn x Fe1- x PO4/C ( x = 0, 0.05, 0.1 and 0.2) cathodes derived from spent Li foil, expired manganese gluconate and rust. J. Energy Storage 78, 110176.
Sławiński, W. A., Playford, H. Y., Hull, S., Norberg, S. T., Eriksson, S. G., Gustafsson, T., Edström, K., Brant, W. R. (2019). Neutron pair distribution function study of FePO4 and LiFePO4. Chem. Mater. 31, 5024–5034.
Gardiner, G. R., Islam, M. S. (2010). Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material. Chem. Mater. 22, 1242–1248.
Malik, R., Zhou, F., Ceder, G. (2009). Phase diagram and electrochemical properties of mixed olivines from first-principles calculations. Phys. Rev. B 79, 214201.
Hashambhoy, A. M., Whitacre, J. F. (2011). Li diffusivity and phase change in LiFe0.5Mn0.5PO4: A comparative study using galvanostatic intermittent titrationand cyclic voltammetry. J. Electrochem. Soc. 158, A390–A395.
Satou, Y., Komine, S., Takai, S., Yao, T. (2015). Non-equilibrium Li insertion paths in LiMn0.75Fe0.25PO4 observed during the relaxation process. ECS Electrochem. Lett. 4, A37–A40.
Ravnsbæk, D. B., Xiang, K., Xing, W., Borkiewicz, O. J., Wiaderek, K. M., Gionet, P., Chapman, K. W., Chupas, P. J., Chiang, Y. M. (2014). Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano Lett. 14, 1484–1491.
Ravnsbæk, D. B., Xiang, K., Xing, W. T., Borkiewicz, O. J., Wiaderek, K. M., Gionet, P., Chapman, K. W., Chupas, P. J., Tang, M., Chiang, Y. M. (2016). Engineering the transformation strain in LiMn y Fe1– y PO4 olivines for ultrahigh rate battery cathodes. Nano Lett. 16, 2375–2380.
Pleuksachat, S., Krabao, P., Pongha, S., Harnchana, V., Klangtakai, P., Limphirat, W., Soontaranon, S., Nash, J., Meethong, N. (2022). Dynamic phase transition behavior of a LiMn0.5Fe0.5PO4 olivine cathode material for lithium-ion batteries revealed through in-situ X-ray techniques. J. Energy Chem. 71, 452–459.
Molenda, J., Ojczyk, W., Marzec, J. (2007). Electrical conductivity and reaction with lithium of LiFe1− y Mn y PO4 olivine-type cathode materials. J. Power Sources 174, 689–694.
Kobayashi, G., Yamada, A., Nishimura, S. I., Kanno, R., Kobayashi, Y., Seki, S., Ohno, Y., Miyashiro, H. (2009). Shift of redox potential and kinetics in Li x (Mn y Fe1− y )PO4. J. Power Sources 189, 397–401.
Zhang, B., Wang, X. J., Li, H., Huang, X. J. (2011). Electrochemical performances of LiFe1− x Mn x PO4 with high Mn content. J. Power Sources 196, 6992–6996.
Luo, C., Jiang, Y., Zhang, X. X., Ouyang, C. Y., Niu, X. B., Wang, L. P. (2022). Misfit strains inducing voltage decay in LiMn y Fe1− y PO4/C. J. Energy Chem. 68, 206–212.
Yang, C. C., Chen, W. H. (2016). Microsphere LiFe0.5Mn0.5PO4/C composite as high rate and long-life cathode material for lithium-ion battery. Mater. Chem. Phys. 173, 482–490.
Wang, L., Li, Y., Dai, Y. N., Yao, Y. C., Zhang, K. Y. (2022). Effect of Mn content on electrochemical performance and energy density of LiFe1– x Mn x PO4/C. Vacuum 196, 110730.
Tuo, K. Y., Mao, L. P., Ding, H., Dong, H., Zhang, N. S., Fu, X. L., Huang, J., Liang, W. B., Li, S. Y., Li, C. L. (2021). Boron and phosphorus dual-doped carbon coating improves electrochemical performances of LiFe0.8Mn0.2PO4 cathode materials. ACS Appl. Energy Mater. 4, 8003–8015.
Zhou, J., Xing, C. X., Huang, J. W., Zhang, Y. C., Li, G. W., Chen, L., Tao, S. Q., Yang, Z. L., Wang, G. R., Fei, L. F. (2024). Direct upcycling of leached FePO4 from spent lithium-ion batteries toward gradient-doped LiMn x Fe1− x PO4 cathode material. Adv. Energy Mater. 14, 2302761.
Minnetti, L., Marangon, V., Hassoun, J. (2022). Synthesis and characterization of a LiFe0.6Mn0.4PO4 olivine cathode for application in a new lithium polymer battery. Adv. Sustain. Syst. 6, 2100464.
Chang, H., Li, Y., Fang, Z. K., Qu, J. P., Zhu, Y. R., Yi, T. F. (2021). Construction of carbon-coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 nanorod composites for high-performance Li-ion batteries. ACS Appl. Mater. Interfaces 13, 33102–33111.
Zheng, J. W., Yang, J. W., Wu, J. M., Li, S. X., Wang, M. W., Huang, B., Li, Y. W., Xiao, S. H., Zhu, Q. (2023). Y3+ doping and electrochemical properties of LiFe0.5Mn0.5PO4@C cathode material for lithium-ion batteries. J. Alloys Compd. 960, 170610.
Podgornova, O. A., Volfkovich, Y. M., Sosenkin, V. E., Kosova, N. V. (2022). Increasing the efficiency of carbon coating on olivine-structured cathodes by choosing a carbon precursor. J. Electroanal. Chem. 907, 116059.
Zhang, B. C., Meng, W., Gong, Y. F., Hu, G. R., Peng, Z. D., Du, K., Makuza, B., Wu, J. H., Xie, X. M., Cao, Y. B. (2022). [001]-oriented LiMn0.6Fe0.4PO4/C nanorod microspheres contributing high-rate performance to olivine-structured cathode for lithium-ion battery. Mater. Today Energy 30, 101162.
Huang, S. L., Lin, W. Z., Li, L. W., Liu, P., Huang, T., Huang, Z. C., Kong, J. L., Xiong, W., Yu, W. W., Ye, S. H., et al. (2023). Pathway for high-energy density LiMnFePO4 cathodes. Prog. Nat. Sci. Mater. Int. 33, 126–131.
Li, Y. C., Xing, B. Y., Zhang, H. S., Wang, M. J., Yang, L., Xu, G. R., Yang, S. T. (2022). Simple synthesis of a hierarchical LiMn0.8Fe0.2PO4/C cathode by investigation of iron sources for lithium-ion batteries. RSC Adv. 12, 26070–26077.
Peng, Z. D., Zhang, B. C., Hu, G. R., Du, K., Xie, X. M., Wu, K. P., Wu, J. H., Gong, Y. F., Shu, Y. M., Cao, Y. B. (2021). Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery. Electrochim. Acta 387, 138456.
Wang, Y. T., Deng, Y. Q., Liu, Y. W., Sun, X. Y., Wang, Y. G., Liu, H., Zhou, H. S., He, P. (2024). Electrochemical performance and in situ phase transition analysis of iron-doped lithium manganese phosphate. Energy Fuels 38, 12265–12273.
Zeng, T. T., Hu, Z., Zhou, Z. Y., Fan, C. L., Zhang, F. Q., Liu, J. S., Liu, D. H. (2023). Boron-catalyzed graphitization carbon layer enabling LiMn0.8Fe0.2PO4 cathode superior kinetics and Li-storage properties. Small Methods 7, e2201390.
Zhang, G. L., Zang, R. R., Mo, M., Fang, Z. J., Huang, Y. X., Hu, K. S., Huang, J. L., Liu, X. X., Huang, L. Y., Kang, G. H., et al. (2023). 3D anchoring structured for LiFe0.5Mn0.5PO4@cornstalk-C cathode materials. Chin. Chem. Lett. 34, 108164.
Li, Y., Zhou, T., Xiong, S. J., Huang, D. G. (2023). Boosting manganese-based phosphate cathode performance via Fe or Ni solid solution for lithium-ion battery: A first-principles and experiment study. Energy Fuels 37, 19304–19319.
Liu, W. F., Liu, X. C., Hao, R., Yang, Z. H., Ouyang, B. X., Zhang, M. J., Pan, M. W., Liu, K. Y. (2023). Contribution of calcium ion doping to the rate property for LiFe0.5Mn0.5PO4/C. J. Electroanal. Chem. 929, 117117.
Jeong, B. J., Sung, J. Y., Jiang, F., Jung, S. P., Lee, C. W. (2024). Providing high stability to suppress metal dissolution in LiMn0.5Fe0.5PO4 cathode materials by Zn doping. J. Energy Storage 96, 112552.
Zhang, B. Q., Wang, S. Z., Liu, L., Liu, H., Yang, J. Q. (2023). Enhancement of Li2ZrO3 Modification of the cycle life of N/S-doped LiMn0.5Fe0.5PO4/C composite cathodes for lithium ion batteries. Langmuir 39, 5187–5198.
Vanaphuti, P., Manthiram, A. (2024). Enhancing the Mn redox kinetics of LiMn0.5Fe0.5PO4 cathodes through a synergistic Co-doping with niobium and magnesium for lithium-ion batteries. Small 20, e2404878.
Yu, H. F., Zhang, E. D., Yu, J. X., Yu, S. M., Fang, Y. G., Chen, L., Jiang, H., Li, C. Z. (2024). Relaxing the Jahn–Teller distortion of LiMn0.6Fe0.4PO4 cathodes via Mg/Ni dual-doping for high-rate and long-life Li-ion batteries. J. Mater. Chem. A 12, 26076–26082.
Li, Z., You, Y., Zhu, Z. Q., Wang, L. H., Ou, S. W., Xu, J. Y., Yuan, M. L. (2025). The synergistic enhancement of electrochemical performance in LiMn0.5Fe0.5PO4 through V doping and V2CT x MXene coating. J. Energy Storage 110, 115111.
Chen, H., Wu, Y. C., Xu, H. Y., Zhao, J. Q., Wang, J., Ren, C. J., Zhao, C., Yang, R. Z. (2025). Fluorine-doped carbon coating of LiFe0.5Mn0.5PO4 enabling high-rate and long-lifespan cathode for lithium-ion batteries. J. Power Sources 628, 235892.
Cho, E., Jeong, S., Kim, D., Choi, W. (2024). Sodium-doped LiFe0.5Mn0.5PO4 using sodium gluconate as both reducing agent and a doping source in lithium-ion batteries. J. Ind. Eng. Chem. 143, 729–739.
Li, Z. P., Zhu, J. H., Xu, M. W., Jiang, J. (2024). Achieving long-lasting and high-capacity LiFe0.5Mn0.5PO4 cathodes with a synergistic F/In dual doping strategy. New J. Chem. 48, 6857–6863.
Yu, M., Li, J., Ning, X. H. (2021). Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon. Electrochim. Acta 368, 137597.
Liang, Y. L., Chen, S. L., Fan, C. L., Yang, J. X., Song, Z. Y., Zeng, X. H. (2021). High-performance LiMn0.8Fe0.2PO4/C cathode prepared by using the toluene-soluble component of pitch as a carbon source. Int. J. Energy Res. 45, 19103–19119.
Yu, H., Han, J. S., Hwang, G. C., Cho, J. S., Kang, D. W., Kim, J. K. (2021). Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries. Electrochim. Acta 365, 137349.
Zhang, B. C., Xie, X. M., Peng, Z. D., Hu, G. R., Du, K., Makuza, B., Gong, Y. F., Ji, X. B., Cao, Y. B. (2022). Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes. J. Power Sources 541, 231671.
Wang, X. T., Yang, Y., Guo, J. Z., Gu, Z. Y., Ang, E. H., Sun, Z. H., Li, W. H., Liang, H. J., Wu, X. L. (2022). An advanced cathode composite for co-utilization of cations and anions in lithium batteries. J. Mater. Sci. Technol. 102, 72–79.
Zhang, X., Hou, M. Y., Tamirate, A. G., Zhu, H. F., Wang, C. X., Xia, Y. Y. (2020). Carbon coated nano-sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries. J. Power Sources 448, 227438.
Hong, Z. W., Dong, H. C., Han, S. J., Li, W. H., Dong, Q. Y., Cao, Y. Q., Gao, X. L., Zhang, Y. X., Lu, W., Chen, L. W. (2021). Nail penetration-safe LiNi0.6Co0.2Mn0.2O2 pouch cells enabled by LiMn0.7Fe0.3PO4 cathode safety additive. J. Power Sources 512, 230505.
Li, R. C., Zeng, S. Z., Wang, L. Y., Yu, X., Zeng, H. L., Liu, W. F., Fu, D. J., Liu, X. G. (2024). A facile approach for regeneration of graphite anodes from spent lithium-ion battery. J. Alloys Compd. 993, 174691.
Fu, D. J., Zhou, W., Liu, J. L., Zeng, S. Z., Wang, L. Y., Liu, W. F., Yu, X., Liu, X. G. (2024). A facile route for the efficient leaching, recovery, and regeneration of lithium and iron from waste lithium iron phosphate cathode materials. Sep. Purif. Technol. 342, 127069.
Du, H., Kang, Y. Q., Li, C. L., Zhao, Y., Wozny, J., Li, T., Tian, Y., Lu, J., Wang, L., Kang, F. Y. et al. (2023). Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder. Battery Energy 2, 20230011.
Xie, J., Xiao, S. W., Xu, W. H., Liu, D. F., Ren, G. X. (2024). A green and simplified method for selective recovery of lithium from the cathode scraps of spent LiFexMn1− x PO4 batteries. Sep. Purif. Technol. 341, 126848.
Yang, Y., Sun, M. M., Yu, W. H., Ma, X. S., Lei, S. Y., Sun, W., Song, S. L., Hu, W. J. H. (2023). Recovering Fe, Mn and Li from LiMn1– x Fe x PO4 cathode material of spent lithium-ion battery by gradient precipitation. Sustain. Mater. Technol. 36, e00625.
Cao, Y., Li, J. F., Tang, D., Zhou, F., Yuan, M. W., Zhu, Y. F., Feng, C. Z., Shi, R. Y., Wei, X. J., Wang, B. R., et al. (2024). Targeted defect repair and multi-functional interface construction for the direct regeneration of spent LiFePO4 cathodes. Adv. Mater. 36, e2414048.
Ji, G. J., Tang, D., Wang, J. X., Liang, Z., Ji, H. C., Ma, J., Zhuang, Z. F., Liu, S., Zhou, G. M., Cheng, H. M. (2024). Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material. Nat. Commun. 15, 4086.