AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Application of Hybrid Bernstein Polynomials and Block-Pulse Functions for Solving Nonlinear Fuzzy Fredholm Integral Equations

Mahdi Baghmisheh1Reza Ezzati2( )
Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz 51579-44533, Iran
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj 31499-68111, Iran
Show Author Information

Abstract

In this paper, hybrid Bernstein polynomials and block-pulse functions based on the method of successive approximations are applied to obtain the approximate solution of nonlinear fuzzy Fredholm integral equations. The main idea of using the proposed method is that fuzzy integral in any iterative process will be reduced to the crisp integration. Some results concerning the error estimate and stability of the numerical method are presented. Numerical examples are introduced to illustrate the effectiveness and simplicity of the present method.

References

[1]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., vol. 24, no. 3, pp. 301–317, 1987.

[2]

S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst., vol. 24, no. 3, pp. 319–330, 1987.

[3]

M. Friedman, M. Ma, and A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets Syst., vol. 106, no. 1, pp. 35–48, 1999.

[4]
M. Friedman, M. Ma, and A. Kandel, On fuzzy integral equations, Fund. Inform., vol. 37, nos. 1&2, pp. 89–99, 1999.
[5]

W. Mordeson and W. Newman, Fuzzy integral equations, Inform. Sci., vol. 87, no. 4, pp. 215–229, 1995.

[6]

C. Wu and M. Ma, On the integrals, series and integral equations of fuzzy set-valued functions, (in Chinese), J. Harbin Inst. Technol., vol. 22, no. 5, pp. 11–19, 1990.

[7]

K. Balachandran and K. Kanagarajan, Existence of solutions of general nonlinear fuzzy Volterra-Ferdholm integral equations, J. Appl. Math. Stoch. Anal., vol. 2005, no. 3, pp. 333–343, 2005.

[8]

K. Balachandran and P. Prakash, Existence of solutions of nonlinear fuzzy Volterra-Fredholm integral equations, Indian J. Pure. Appl. Math., vol. 33, no. 3, pp. 329–343, 2002.

[9]

M. Friedman, M. Ma, and A. Kandel, Solutions to fuzzy integral equations with arbitrary kernels, Int. J. Approx. Reason, vol. 20, no. 3, pp. 249–262, 1999.

[10]

J. Y. Park and H. K. Han, Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations, Fuzzy Sets Syst., vol. 105, no. 3, pp. 481–488, 1999.

[11]

J. Y. Park and J. U. Jeong, On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations, Fuzzy Sets Syst., vol. 115, no. 3, pp. 425–431, 2000.

[12]

J. Y. Park and J. U. Jeong, A note on fuzzy integral equations, Fuzzy Sets Syst., vol. 108, no. 2, pp. 193–200, 1999.

[13]

B. Bede and S. G. Gal, Quadrature rules for integrals of fuzzy-number-valued functions, Fuzzy Sets Syst., vol. 145, no. 3, pp. 359–380, 2004.

[14]

A. M. Bica, Error estimation in the approximation of the solution of nonlinear fuzzy fredholm integral equations, Inf. Sci., vol. 178, no. 5, pp. 1279–1292, 2008.

[15]

O. S. Fard and M. Sanchooli, Two successive schemes for numerical solution of linear fuzzy Fredholm integral equations of the second kind, Aust. J. Basic Appl. Sci., vol. 4, no. 5, pp. 817–825, 2010.

[16]

J. Y. Park, S. Y. Lee, and J. U. Jeong, The approximate solutions of fuzzy functional integral equations, Fuzzy Sets Syst., vol. 110, no. 1, pp. 79–90, 2000.

[17]

A. M. Bica and C. Popescu, Approximating the solution of nonlinear Hammerstein fuzzy integral equations, Fuzzy Sets Syst., vol. 245, pp. 1–17, 2014.

[18]

R. Ezzati and S. Ziari, Numerical solution of nonlinear fuzzy Fredholm integral equations using iterative method, Appl. Math. Comput., vol. 225, pp. 33–42, 2013.

[19]

R. Ezzati and S. Ziari, Numerical solution and error estimation of fuzzy fredholm integral equation using fuzzy Bernstein polynomials, Aus. J. Basic Appl. Sci., vol. 5, no. 9, pp. 2072–2082, 2011.

[20]

F. Mirzaee, N. Samadyar, and S. Alipour, Numerical solution of high order linear complex differential equations via complex operational matrix method, SeMA J., vol. 76, pp. 1–13, 2019.

[21]

F. Mirzaee and N. Samadyar, Parameters estimation of HIV infection model of CD4+ T-cells by applying orthonormal Bernstein collocation method, Int. J. Biomath., vol. 11, no. 2, p. 1850020, 2018.

[22]

F. Mirzaee, M. K. Yari, and S. F. Hoseini, A computational method based on hybrid of bernstein and block-pulse functions for solving linear fuzzy Fredholm integral equations system, J. Taibah Univ. Sci., vol. 9, no. 2, pp. 252–263, 2015.

[23]

M. Mosleh and M. Otadi, Numerical solution of fuzzy integral equations using Bernstein polynomials, Aust. J. Basic Appl. Sci., vol. 5, no. 7, pp. 724–728, 2011.

[24]
M. Baghmisheh and R. Ezzati, Numerical solution of nonlinear fuzzy Fredholm integral equations of the second kind using hybrid of block-pulse functions and Taylor series, Adv. Differ. Equ., vol. 2015, p. 51, 2015.
[25]
D. Dubois and H. Prade, Fuzzy numbers: An overview, in J. C. Bezdek ed., Analysis of Fuzzy Information, Boca Raton, FL, USA: CRC Press, 1987, pp. 3–39.
[26]

C. Wu and Z. Gong, On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets Syst., vol. 120, no. 3, pp. 523–532, 2001.

[27]

S. Abbasbandy, E. Babolian, and M. Alavi, Numerical method for solving linear fredholm fuzzy integral equations of the second kind, Chaos Solitons Fractals, vol. 31, no. 1, pp. 138–146, 2007.

[28]
S. G. Gal, Approximation theory in fuzzy setting, in G. Anastassiou ed., Handbook of Analytic-Computational Methods in Applied Mathematics, New York, NY, USA: Chapman and Hall/CRC, 2000, pp. 617–666.
[29]
G. A. Anastssiou, Fuzzy mathematics: Approximation theory, Heidelberg, Germany: Springer, 2010.
[30]

S. M. Sadatrasoul and R. Ezzati, Iterative method for numerical solution of two-dimensional nonlinear fuzzy integral equations, Fuzzy Sets Syst., vol. 280, pp. 91–106, 2015.

[31]

A. M. Bica and C. Popescu, Fuzzy spline interpolation with optimal property in parametric form, Inf. Sci., vol. 236, pp. 138–155, 2013.

[32]

R. Goetschel Jr. and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst., vol. 18, no. 1, pp. 31–43, 1986.

[33]

M. Idrees Bhatti and P. Braken, Solutions of differential equations in a Bernstein polynomial basis, J. Comput. Appl. Math., vol. 205, no. 1, pp. 272–280, 2007.

[34]
T. J. Rivlin, An Introduction to the approximation of functions, Waltham, MA, USA: Blaisdell Pub. Co., 1969.
[35]

M. Alipour, D. Baleanu, and F. Babaei, Hybrid Bernstein block-pulse functions method for second kind integral equations with convergence analysis, Abstr. Appl. Anal., vol. 2014, p. 623763, 2014.

[36]

M. Baghmisheh and R. Ezzati, Error estimation and numerical solution of nonlinear fuzzy fredholm integral equations of the second kind using triangular functions, J. Intell. Fuzzy Syst., vol. 30, no. 2, pp. 639–649, 2016.

[37]

S. Ziari, I. Perfilieva, and S. Abbasbandy, Block-pulse functions in the method of successive approximations for nonlinear fuzzy Fredholm integral equations, Differ. Equ. Dyn. Syst., vol. 30, pp. 995–1009, 2022.

[38]

A. M. Bica, Algebraic structures for fuzzy numbers from categorial point of view, Soft Comput., vol. 11, pp. 1099–1105, 1099.

Fuzzy Information and Engineering
Pages 69-86
Cite this article:
Baghmisheh M, Ezzati R. Application of Hybrid Bernstein Polynomials and Block-Pulse Functions for Solving Nonlinear Fuzzy Fredholm Integral Equations. Fuzzy Information and Engineering, 2023, 15(1): 69-86. https://doi.org/10.26599/FIE.2023.9270006

1048

Views

149

Downloads

2

Crossref

0

Web of Science

2

Scopus

Altmetrics

Received: 15 June 2019
Revised: 02 December 2022
Accepted: 15 January 2023
Published: 01 March 2023
© The Author(s) 2023. Published by Tsinghua University Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return