AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Strong Domination Index in Fuzzy Graphs

Kavya R. Nair1( )Muraleedharan Shetty Sunitha1
Department of Mathematics, National Institute of Technology, Calicut 673601, India
Show Author Information

Abstract

In this article, a novel idea of domination degree and index are defined in a fuzzy graph (FG) using weight of strong edges. The strong domination degree (SDD) of a vertex u is defined using the weight of minimal strong dominating set (MSDS) containing u. Methods to obtain an MSDS containing a particular vertex are discussed in the article. Idea of upper strong domination number, strong irredundance number, strong upper irredundance number, strong independent domination number, and strong independence number are explained and illustrated subsequently. Strong domination index (SDI) of an FG is defined using the SDD of each vertex. The concept is applied on various FGs like complete FG, complete bipartite and r-partite FG, fuzzy tree, fuzzy cycle, and fuzzy stars. Bounds involving the SDD and SDI are also obtained. Applications for SDD of a vertex is also provided.

References

[1]
O. Ore, Theory of Graphs. New York, NY, USA: American Mathematical Society Colloquium Publications, 1962.
[2]
C. Berge, Theory of Graphs & Its Applications. London, UK: Methuen, 1962.
[3]
T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs. Cachan, France: CRC Press, 1998.
[4]

B. Bollobás and E. J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory, vol. 3, no. 3, pp. 241–249, 1979.

[5]

E. J. Cockayne, O. Favaron, C. Payan, and A. G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math., vol. 33, no. 3, pp. 249–258, 1981.

[6]
E. J. Cockayne and S. T. Hedetniemi, Independence graphs, in Proc. 5th Southeast Conf. Combinatorics, Graph Theory and Computing, Boca Raton, FL, USA, 1974, pp. 241–249.
[7]

E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, vol. 7, no. 3, pp. 247–261, 1977.

[8]
A. Rosenfeld, Fuzzy graphs, in Fuzzy Sets and Their Applications to Cognitive and Decision Processes, L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura, eds. Pittsburgh, PA, USA: Academic Press, 1975, pp. 77–95.
[9]

S. Broumi, S. Mohanaselvi, T. Witczak, M. Talea, A. Bakali, and F. Smarandache, Complex Fermatean neutrosophic graph and application to decision making, Decis. Mak. Appl. Manag. Eng., vol. 6, no. 1, pp. 474–501, 2023.

[10]

S. Broumi, R. Sundareswaran, M. Shanmugapriya, A. Bakali, and M. Talea, Theory and applications of Fermatean neutrosophic graphs, Neutrosophic Sets and Systems, vol. 50, pp. 248–286, 2022.

[11]
S. Mathew, J. N. Mordeson, and D. S. Malik, Fuzzy Graph Theory. Cham, Switzerland: Springer, 2018.
[12]

S. Bera, G. Muhiuddin, and M. Pal, Facility location problem using the concept of double domination in m-polar interval-valued fuzzy graph, J. Intell. Fuzzy Syst., vol. 45, no. 5, pp. 7713–7726, 2023.

[13]

S. Bera and M. Pal, A novel concept of domination in m-polar interval-valued fuzzy graph and its application, Neural Comput. Appl., vol. 34, no. 1, pp. 745–756, 2022.

[14]

O. T. Manjusha and M. S. Sunitha, Strong domination in fuzzy graphs, Fuzzy Information and Engineering, vol. 7, no. 3, pp. 369–377, 2015.

[15]

J. N. Mordeson and C. S. Peng, Operations on fuzzy graphs, Inf. Sci. Int. J., vol. 79, nos. 3&4, pp. 159–170, 1994.

[16]

S. Sivasankar, S. Bera, S. I. Maaz, and M. Pal, Defective vertex and stable connectivity of a fuzzy graph and their application to identify the chickenpox, J. Intell. Fuzzy Syst., vol. 45, no. 2, pp. 2253–2265, 2023.

[17]

H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., vol. 69, no. 1, pp. 17–20, 1947.

[18]

M. Binu, S. Mathew, and J. N. Mordeson, Wiener index of a fuzzy graph and application to illegal immigration networks, Fuzzy Sets Syst., vol. 384, pp. 132–147, 2020.

[19]

S. Kalathian, S. Ramalingam, S. Raman, N. Srinivasan, and C. Kahraman, Some topological indices in fuzzy graphs, J. Intell. Fuzzy Syst., vol. 39, no. 5, pp. 6033–6046, 2020.

[20]

A. Ayache and A. Alameri, Topological indices of the-graph, J. Assoc. Arab Univ. Basic Appl. Sci., vol. 24, no. 1, pp. 283–291, 2017.

[21]

I. Javaid, H. Benish, M. Imran, A. Khan, and Z. Ullah, On some bounds of the topological indices of generalized Sierpiński and extended Sierpiński graphs, J. Inequal. Appl., vol. 2019, no. 1, p. 37, 2019.

[22]

V. R. Kulli, Computation of some topological indices of certain networks, Int. J. Math. Arch., vol. 8, no. 2, pp. 99–106, 2017.

[23]

S. Stevanovic and D. Stevanović, On distance–based topological indices used in architectural research, MATCH Commun. Math. Comput. Chem., vol. 79, pp. 659–683, 2018.

[24]

A. M. H. Ahmed, A. Alwardi, and M. R. Salestina, On domination topological indices of graphs, Int. J. Anal. Appl., vol. 19, no. 1, pp. 47–64, 2021.

[25]
K. R. Nair and M. S. Sunitha, Domination index in graphs, arXiv preprint arXiv: 2307.10407, 2023.
[26]

L. A. Zadeh, Fuzzy sets, Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.

[27]

A. N. Gani and M. B. Ahamed, Order and size in fuzzy graphs, Bull. Pure Appl. Sci., vol. 22, no. 1, pp. 145–148, 2003.

[28]
S. Mathew, J. N. Mordeson, and D. S. Malik, Fuzzy Graph Theory with Applications to Human Trafficking. Cham, Switzerland: Springer, 2018.
[29]

K. R. Bhutani, and A. Battou, On M-strong fuzzy graphs, Inf. Sci. Int. J., vol. 155, nos. 1&2, pp. 103–109, 2003.

[30]

A. N. Gani and V. T. Chandrashekaran, Domination in fuzzy graphs, Adv. Fuzzy Sets Syst., vol. 1, pp. 17–26, 2006.

[31]

A. Somasundaram and S. Somasundaram, Domination in fuzzy graphs–I, Pattern Recognit. Lett., vol. 19, no. 9, pp. 787–791, 1998.

[32]

A. N. Gani and P. Vadivel, On domination, independence and irrendundance in fuzzy graph, Int. Rev. Fuzzy Math., vol. 3, no. 2, pp. 191–198, 2008.

[33]

A. N. Gani and P. Vadivel, A study on domination, independent domination and irredundance in fuzzy graph, Appl. Math. Sci., vol. 5, no. 47, pp. 2317–2325, 2011.

[34]

K. R. Bhutani, On automorphisms of fuzzy graphs, Pattern Recognit. Lett., vol. 9, no. 3, pp. 159–162, 1989.

[35]

N. Anjali, and S. Mathew, On blocks and stars in fuzzy graphs, J. Intell. Fuzzy Syst., vol. 28, no. 4, pp. 1659–1665, 2015.

[36]
J. N. Mordeson and P. S. Nair, Fuzzy Graphs and Fuzzy Hypergraphs. Heidelberg, Germany: Physica, 2012.
[37]
J. N. Mordeson and S. Mathew, Advanced Topics in Fuzzy Graph Theory. Cham, Switzerland: Springer International Publishing, 2019.
Fuzzy Information and Engineering
Pages 1-23
Cite this article:
Nair KR, Sunitha MS. Strong Domination Index in Fuzzy Graphs. Fuzzy Information and Engineering, 2024, 16(1): 1-23. https://doi.org/10.26599/FIE.2023.9270028

522

Views

145

Downloads

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 25 September 2023
Revised: 10 November 2023
Accepted: 10 December 2023
Published: 30 March 2024
© The Author(s) 2024. Published by Tsinghua University Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return