Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In recent years, the field of biomedical video source identification has witnessed a significant evolution driven by advances in both fuzzy-based systems and machine learning models. This paper presents a comprehensive survey of the current state of the art in this domain, highlighting the transition from traditional fuzzy-based approaches to the emerging dominance of machine learning techniques. Biomedical videos have become integral in various aspects of healthcare, from medical imaging and diagnostics to surgical procedures and patient monitoring. The accurate identification of the sources of these videos is of paramount importance for quality control, accountability, and ensuring the integrity of medical data. In this context, source identification plays a critical role in establishing the authenticity and origin of biomedical videos. This survey delves into the evolution of source identification methods, covering the foundational principles of fuzzy-based systems and their applications in the biomedical context. It explores how linguistic variables and expert knowledge were employed to model video sources, and discusses the strengths and limitations of these early approaches. By surveying existing methodologies and databases, this paper contributes to a broader understanding of the field’s progress and challenges.
K. Muhammad, M. S. Obaidat, and T. Hussain, J. Del Ser, N. Kumar, M. Tanveer, and F. Doctor, Fuzzy logic in surveillance big video data analysis: Comprehensive review, challenges, and research directions, ACM Comput. Surv., vol. 54, no. 3, p. 68, 2021.
Y. Akbari, S. Al-maadeed, O. Elharrouss, F. Khelifi, A. Lawgaly, and A. Bouridane, Digital forensic analysis for source video identification: A survey, Forensic Sci. Int. Digit. Investig., vol. 41, p. 301390, 2022.
Y. Huang, J. Zhang, and H. Huang, Camera model identification with unknown models, IEEE Trans. Inf. Forensics Secur., vol. 10, no. 12, pp. 2692–2704, 2015.
J. G. Chen, N. Wadhwa, Y. J. Cha, F. Durand, W. T. Freeman, and O. Buyukozturk, Modal identification of simple structures with high-speed video using motion magnification, J. Sound Vib., vol. 345, pp. 58–71, 2015.
M. Silva, B. Martinez, E. Figueiredo, J. C. W. A. Costa, Y. Yang, and D. Mascareñas, Nonnegative matrix factorization-based blind source separation for full-field and high-resolution modal identification from video, J. Sound Vib., vol. 487, p. 115586, 2020.
J. Lukas, J. Fridrich, and M. Goljan, Digital camera identification from sensor pattern noise, IEEE Trans. Inf. Forensics Secur., vol. 1, no. 2, pp. 205–214, 2006.
G. S. Bennabhaktula, D. Timmerman, E. Alegre, and G. Azzopardi, Source camera device identification from videos, SN Comput. Sci., vol. 3, no. 4, p. 316, 2022.
D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol. 81, no. 3, pp. 425–455, 1994.
W. van Houten and Z. Geradts, Source video camera identification for multiply compressed videos originating from YouTube, Digit. Investig., vol. 6, nos. 1&2, pp. 48–60, 2009.
A. Mahalanobis, B. V. Kumar, and D. Casasent, Minimum average correlation energy filters, Appl. Opt., vol. 26, no. 17, pp. 3633–3640, 1987.
L. J. G. Villalba, A. L. S. Orozco, R. R. López, and J. H. Castro, Identification of smartphone brand and model via forensic video analysis, Expert Syst. Appl., vol. 55, no. C, pp. 59–69, 2016.
W. C. Yang, J. Jiang, and C. H. Chen, A fast source camera identification and verification method based on PRNU analysis for use in video forensic investigations, Multimed. Tools Appl., vol. 80, no. 5, pp. 6617–6638, 2021.
D. Shullani, M. Fontani, M. Iuliani, O. Al Shaya, and A. Piva, VISION: A video and image dataset for source identification, EURASIP J. Inf. Secur., vol. 2017, no. 1, p. 15, 2017.
R. R. López, E. A. Luengo, A. L. S. Orozco, and L. J. G. Villalba, Digital video source identification based on container’s structure analysis, IEEE Access, vol. 8, pp. 36363–36375, 2020.
C. T. Li, Source camera identification using enhanced sensor pattern noise, IEEE Trans. Inf. Forensics Secur., vol. 5, no. 2, pp. 280–287, 2010.
R. Ramos López, A. L. Sandoval Orozco, and L. J. García Villalba, Compression effects and scene details on the source camera identification of digital videos, Expert Syst. Appl., vol. 170, p. 114515, 2021.
M. Iuliani, M. Fontani, D. Shullani, and A. Piva, Hybrid reference-based video source identification, Sensors, vol. 19, no. 3, p. 649, 2019.
S. Mandelli, P. Bestagini, L. Verdoliva, and S. Tubaro, Facing device attribution problem for stabilized video sequences, IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 14–27, 2019.
E. Altinisik and H. T. Sencar, Source camera verification for strongly stabilized videos, IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 643–657, 2021.
S. Taspinar, M. Mohanty, and N. Memon, Camera identification of multi-format devices, Pattern Recognit. Lett., vol. 140, pp. 288–294, 2020.
I. Amerini, R. Caldelli, A. Del Mastio, A. Di Fuccia, C. Molinari, and A. P. Rizzo, Dealing with video source identification in social networks, Signal Process. Image Commun., vol. 57, pp. 1–7, 2017.
C. Meij and Z. Geradts, Source camera identification using photo response non-uniformity on WhatsApp, Digit. Investig., vol. 24, pp. 142–154, 2018.
E. K. Kouokam and A. E. Dirik, PRNU-based source device attribution for YouTube videos, Digit. Investig., vol. 29, pp. 91–100, 2019.
A. Pande, S. Chen, P. Mohapatra, and J. Zambreno, Hardware architecture for video authentication using sensor pattern noise, IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 1, pp. 157–167, 2014.
S. Chen, A. Pande, K. Zeng, and P. Mohapatra, Live video forensics: Source identification in lossy wireless networks, IEEE Trans. Inf. Forensics Secur., vol. 10, no. 1, pp. 28–39, 2015.
J. Kaur and D. K. K. Randhawa, Source identification of videos transmitted in lossy wireless networks, IJIREEICE, vol. 5, no. 5, pp. 331–339, 2017.
S. Taspinar, M. Mohanty, and N. Memon, PRNU-based camera attribution from multiple seam-carved images, IEEE Trans. Inf. Forensics Secur., vol. 12, no. 12, pp. 3065–3080, 2017.
P. Ferrara, M. Iuliani, and A. Piva, PRNU-based video source attribution: Which frames are you using, J. Imaging, vol. 8, no. 3, p. 57, 2022.
J. Xu, H. W. Chang, S. Yang, and M. Wang, Fast feature-based video stabilization without accumulative global motion estimation, IEEE Trans. Consum. Electron., vol. 58, no. 3, pp. 993–999, 2012.
F. Liu, M. Gleicher, H. Jin, and A. Agarwala, Content-preserving warps for 3D video stabilization, ACM Trans. Graph., vol. 28, no. 3, p. 44, 2009.
Z. Wang, L. Zhang, and H. Huang, High-quality real-time video stabilization using trajectory smoothing and mesh-based warping, IEEE Access, vol. 6, pp. 25157–25166, 2018.
M. I. Chacon-Murguia and S. Gonzalez-Duarte, An adaptive neural-fuzzy approach for object detection in dynamic backgrounds for surveillance systems, IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3286–3298, 2012.
Q. Liang and J. M. Mendel, MPEG VBR video traffic modeling and classification using fuzzy technique, IEEE Trans. Fuzzy Syst., vol. 9, no. 1, pp. 183–193, 2001.
J. Navarro, F. Doctor, V. Zamudio, R. Iqbal, A. K. Sangaiah, and C. Lino, Fuzzy adaptive cognitive stimulation therapy generation for Alzheimer’s sufferers: Towards a pervasive dementia care monitoring platform, Future Gener. Comput. Syst., vol. 88, pp. 479–490, 2018.
Y. Su, J. Xu, B. Dong, J. Zhang, and Q. Liu, A novel source mpeg-2 video identification algorithm, Int. J. Patt. Recogn. Artif. Intell., vol. 24, no. 8, pp. 1311–1328, 2010.
K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, 2017.
O. Mayer and M. C. Stamm, Forensic similarity for digital images, IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 1331–1346, 2019.
M. Javaid, A. Haleem, R. P. Singh, and R. Suman, Sustaining the healthcare systems through the conceptual of biomedical engineering: A study with recent and future potentials, Biomed. Technol., vol. 1, pp. 39–47, 2023.
J. N. Acosta, G. J. Falcone, P. Rajpurkar, and E. J. Topol, Multimodal biomedical AI, Nat. Med., vol. 28, no. 9, pp. 1773–1784, 2022.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).