Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
One of the most prevalent problems in linear programming as one of the convenient models in the field of operation research environment is Data Envelopment Analysis (DEA), which supports the efficiency of Decision-Making Units (DMUs). Usually, accurate data are common; however, in the real world, we are facing an inaccurate situation. In this paper, a new model for assessing DMUs in a fuzzy environment is presented; we consider the inverse DEA model with the variable return to scale with fuzzy numbers for fluctuating data. A case study is given to illustrate its performance.
S. Pascoe, T. Cannard, N. A. Dowling, C. M. Dichmont, F. Asche, and L. R. Little, Use of Data Envelopment Analysis (DEA) to assess management alternatives in the presence of multiple objectives, Mar. Policy, vol. 148, p. 105444, 2023.
K. Smętek, D. Zawadzka, and A. Strzelecka, Examples of the use of Data Envelopment Analysis (DEA) to assess the financial effectiveness of insurance companies, Procedia Comput. Sci., vol. 207, pp. 3924–3930, 2022.
S. H. Nasseri and M. A. Khatir, Fuzzy stochastic undesirable two-stage data envelopment analysis models with application to banking industry, J. Intell. Fuzzy Syst., vol. 37, no. 5, pp. 7047–7057, 2019.
Q. Wei, J. Zhang, and X. Zhang, An inverse DEA model for inputs/outputs estimate, Eur. J. Oper. Res., vol. 121, no. 1, pp. 151–163, 2000.
L. Chen, Y. Wang, F. Lai, and F. Feng, An investment analysis for China’s sustainable development based on inverse data envelopment analysis, J. Clean. Prod., vol. 142, pp. 1638–1649, 2017.
G. R. Amin, S. Al-Muharrami, and M. Toloo, A combined goal programming and inverse DEA method for target setting in mergers, Expert Syst. Appl., vol. 115, pp. 412–417, 2019.
D. J. Lim, Inverse data envelopment analysis for operational planning: The impact of oil price shocks on the production frontier, Expert Syst. Appl., vol. 161, p. 113726, 2020.
S. Lertworasirikul, P. Charnsethikul, and S. C. Fang, Inverse data envelopment analysis model to preserve relative efficiency values: The case of variable returns to scale, Comput. Ind. Eng., vol. 61, no. 4, pp. 1017–1023, 2011.
M. Ghiyasi, On inverse DEA model: The case of variable returns to scale, Comput. Ind. Eng., vol. 87, pp. 407–409, 2015.
A. Kumar and A. S. Balu, Epistemic uncertainty quantification in structural systems using improved universal grey theory, Structures, vol. 56, p. 104872, 2023.
G. N. Zhu, J. Ma, and J. Hu, A fuzzy rough number extended AHP and VIKOR for failure mode and effects analysis under uncertainty, Adv. Eng. Inform., vol. 51, p. 101454, 2022.
R. E. Bellman and L. A. Zadeh, Decision-making in a fuzzy environment, Manag. Sci., vol. 17, no. 4, pp. 141–164, 1970.
N. Sheth and K. Triantis, Measuring and evaluating effectiveness using goal programming and data envelopment analysis in a fuzzy environment, Yugoslav J. Oper. Res., vol. 13, no. 1, pp. 35–60, 2003.
P. Peykani, E. Mohammadi, A. Emrouznejad, M. S. Pishvaee, and M. Rostamy-Malkhalifeh, Fuzzy data envelopment analysis: An adjustable approach, Expert Syst. Appl., vol. 136, pp. 439–452, 2019.
M. R. Mozaffari, S. Mohammadi, P. F. Wanke, and H. L. Correa, Towards greener petrochemical production: Two-stage network data envelopment analysis in a fully fuzzy environment in the presence of undesirable outputs, Expert Syst. Appl., vol. 164, p. 113903, 2021.
Z. Chen, X. Ming, R. Wang, and Y. Bao, Selection of design alternatives for smart product service system: A rough-fuzzy data envelopment analysis approach, J. Clean. Prod., vol. 273, p. 122931, 2020.
H. Zavieh, H. Nasseri, and C. Triki, New advances on fuzzy linear programming problem by semi-infinite programming approach, Gazi Univ. J. Sci., vol. 35, no. 3, pp. 1062–1076, 2022.
H. Zavieh, A. Javadpour, Y. Li, F. Ja’fari, S. H. Nasseri, and A. S. Rostami, Task processing optimization using cuckoo particle swarm (CPS) algorithm in cloud computing infrastructure, Clust. Comput., vol. 26, no. 1, pp. 745–769, 2023.
H. Cheng, W. Huang, Q. Zhou, and J. Cai, Solving fuzzy multi-objective linear programming problems using deviation degree measures and weighted max–min method, Appl. Math. Model., vol. 37, nos.10&11, pp. 6855–6869, 2013.
R. Tavakkoli-Moghaddam, B. Javadi, F. Jolai, and A. Ghodratnama, The use of a fuzzy multi-objective linear programming for solving a multi-objective single-machine scheduling problem, Appl. Soft Comput., vol. 10, no. 3, pp. 919–925, 2010.
G. Yang, X. Li, L. Huo, and Q. Liu, A solving approach for fuzzy multi-objective linear fractional programming and application to an agricultural planting structure optimization problem, Chaos Solitons Fractals, vol. 141, p. 110352, 2020.
H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst., vol. 1, no. 1, pp. 45–55, 1978.
A. Hatami-Marbini, A. Emrouznejad, and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making, Eur. J. Oper. Res., vol. 214, no. 3, pp. 457–472, 2011.
H. Zavieh, A. Javadpour, F. Ja’fari, A. K. Sangaiah, and A. Słowik, Enhanced efficiency in fog computing: A fuzzy data-driven machine selection strategy, Int. J. Fuzzy Syst., vol. 26, no. 1, pp. 368–389, 2024.
J. M. Adamo, Fuzzy decision trees, Fuzzy Sets Syst., vol. 4, no. 3, pp. 207–219, 1980.
L. M. de Campos Ibáñez and A. González Muñoz, A subjective approach for ranking fuzzy numbers, Fuzzy Sets Syst., vol. 29, no. 2, pp. 145–153, 1989.
R. R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Inf. Sci., vol. 24, no. 2, pp. 143–161, 1981.
D. Dubois and H. Prade, Ranking fuzzy numbers in the setting of possibility theory, Inf. Sci., vol. 30, no. 3, pp. 183–224, 1983.
N. Mahdavi-Amiri and S. H. Nasseri, Duality in fuzzy number linear programming by use of a certain linear ranking function, Appl. Math. Comput., vol. 180, no. 1, pp. 206–216, 2006.
N. Mahdavi-Amiri and S. H. Nasseri, Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables, Fuzzy Sets Syst., vol. 158, no. 17, pp. 1961–1978, 2007.
N. Mahdavi-Amiri, S. H. Nasseri, and A. Yazdani, Fuzzy primal simplex algorithms for solving fuzzy linear programming problems, Iranian J. Oper. Res., vol. 1, no. 2, pp. 68–84, 2009.
A. Charnes, W. W. Cooper, and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., vol. 2, no. 6, pp. 429–444, 1978.
R. D. Banker, A. Charnes, and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manag. Sci., vol. 30, no. 9, pp. 1078–1092, 1984.
B. Ebrahimi, M. Tavana, M. Rahmani, and F. J. Santos-Arteaga, Efficiency measurement in data envelopment analysis in the presence of ordinal and interval data, Neural Comput. Appl., vol. 30, no. 6, pp. 1971–1982, 2018.
S. Lertworasirikul, S. C. Fang, J. A. Joines, and H. L. W. Nuttle, Fuzzy data envelopment analysis (DEA): A possibility approach, Fuzzy Sets Syst., vol. 139, no. 2, pp. 379–394, 2003.
S. H. Nasseri and H. Zavieh, A multi-objective method for solving fuzzy linear programming based on semi-infinite model, Fuzzy Information and Engineering, vol. 10, no. 1, pp. 91–98, 2018.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).