PDF (1.7 MB)
Collect
Submit Manuscript
Article | Open Access

Unveiling Internet Streaming Services: A Comparison Using Neutrosophic Graphs

Department of Mathematics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai 600062, India
Show Author Information

Abstract

This paper investigates the inverse of the maximum result obtained by multiplying two unique graph types known as neutrosophic graphs. The main goal is to comprehend a point’s degree in the opposite situation of a neutrosophic graph’s maximum product. The study deals with two particular graph kinds and offers several conclusions and evidence regarding the opposite of the highest product. The research also contains a practical application of these ideas by locating an online streaming service utilizing a neutrosophic graph and a technique known as normalized Hamming distance and normalized Euclidean distance. Finally, the comparison results are given.

References

[1]

L. A. Zadeh, Fuzzy sets, Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.

[2]
A. Rosenfeld, Fuzzy graphs, in Proc. US–Japan Seminar on Fuzzy Sets and Their Applications, Berkeley, CA, USA, 1974, pp. 77–95.
[3]
R. T. Yeh and S. Y. Bang, Fuzzy relations, fuzzy graphs, and their applications to clustering analysis, in Proc. US–Japan Seminar on Fuzzy Sets and Their Applications, Berkeley, CA, USA, 1974, pp. 125–149.
[4]

K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., vol. 20, no. 1, pp. 87–96, 1986.

[5]
A. Shannon and K. T. Atanassov, A first step to a theory of the intuitionistic fuzzy graphs, in Proc. 1st Workshop on Fuzzy Based Expert Systems, Sofia, Bulgaria, 1994, pp. 59–61
[6]
R. Parvathi and M. G. Karunambigai, Intuitionistic fuzzy graphs, in Proc. Int. Conf. 9th Fuzzy Days, Dortmund, Germany, 2006.
[7]

S. Sahoo and M. Pal, Diferent types of products on intuitionistic fuzzy graphs, Pac. Sci. Rev. A: Nat. Sci. Eng., vol. 17, no. 3, pp. 87–96, 2015.

[8]

N. Yaqoob, M. Gulistan, S. Kadry, and H. A. Wahab, Complex intuitionistic fuzzy graphs with application in cellular network provider companies, Mathematics, vol. 7, no. 1, p. 35, 2019.

[9]
S. Y. Mohamed and A. M. Ali, Max-product on intuitionistic fuzzy graph, in Proc. 1st Int. Conf. Collaborative Research in Mathematical Sciences (ICCRM’S17), Coimbatore, India, 2017, pp. 181–185.
[10]

S. Y. Mohamed, and A. M. Ali, Complement of max product of intuitionistic fuzzy graphs, Complex Intell. Syst., vol. 7, pp. 2895–2905, 2021.

[11]

S. Y. Mohamed and A. M. Ali, Modular product on intuitionistic fuzzy graphs, Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 9, pp. 19258–19263, 2017.

[12]
F. Smarandache, Neutrosophic set - A generalization of the intuitionistic fuzzy set, in Proc. 2006 IEEE Int. Conf. Granular Computing, Atlanta, GA, USA, 2006, pp. 38–42
[13]
F. Smarandache, Introduction to the n-SuperHyperGraph - The most general form of graph today, Neutrosophic Sets Syst., vol. 48, pp. 483–485, 2022.
[14]

H. Rashmanlou, R. A. Borzooei, S. Samanta, M. Pal, Properties of interval valued intuitionistic ( S, T) – Fuzzy graphs, Pac. Sci. Rev. A: Nat. Sci. Eng., vol. 18, no. 1, pp. 30–37, 2016.

[15]
H. Rashmanlou and M. Pal, Balanced interval-valued fuzzy graphs, J. Phys. Sci., vol. 17, pp. 43–57, 2013.
[16]

H. Rashmanlou, S. Samanta, M. Pal, and R. A. Borzooei, Bipolar fuzzy graphs with categorical properties, Int. J. Comput. Intell. Syst., vol. 8, no. 5, pp. 808–818, 2015.

[17]

A. A. Talebi, H. Rashmanlou, and S. H. Sadati, New concepts on m-polar interval-valued intuitionistic fuzzy graph, TWMS J. App. Eng. Math., vol. 10, no. 3, pp. 806–818, 2020.

[18]
H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets, in Multispace & Multistructure. Neutrosophic Transdisciplinarity (100 Collected Papers of Sciences ), Vol. IV, F. Smarandache Ed. Hanko, Finland: North-European Scientific Publishers, 2010, pp. 410–413
[19]

A. Q. Ansari, R. Biswas, and S. Aggarwal, Neutrosophic classifier: An extension of fuzzy classifer, Appl. Soft Comput., vol. 13, no. 1, pp. 563–573, 2013.

[20]
S. Broumi and F. Smarandache, New distance and similarity measures of interval neutrosophic sets, in Proc. 17th Int. Conf. Information Fusion (FUSION), Salamanca, Spain, 2014, pp. 1–7.
[21]

H. L. Yang, Z. L. Guo, Y. She, and X. Liao, On single valued neutrosophic relations, J. Intell. Fuzzy Syst., vol. 30, no. 2, pp. 1045–1056, 2016.

[22]
M. Kaviyarasu, On r-edge regular neutrosophic graphs, Neutrosophic Sets Syst., vol. 53, 239–250, 2023.
[23]

M. Alqahtani, M. Kaviyarasu, A. Al-Masarwah, and M. Rajeshwari, Application of complex neutrosophic graphs in hospital infrastructure design, Mathematics, vol. 12, no. 5, pp. 719, 2024.

[24]

M. Akram, S. Siddique, and B. Davvaz, New concepts in neutrosophic graphs with application, J. Appl. Math. Comput., vol. 57, pp. 279–302, 2018.

Fuzzy Information and Engineering
Pages 103-120
Cite this article:
Kaviyarasu M. Unveiling Internet Streaming Services: A Comparison Using Neutrosophic Graphs. Fuzzy Information and Engineering, 2024, 16(2): 103-120. https://doi.org/10.26599/FIE.2024.9150035
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return