PDF (3.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Tables (2)
Table 1
Table 2
Article | Open Access

Genetic Algorithm Approaches for Parameter Estimation and Global Stability in Fuzzy Epidemic Modeling

Shirali Kadyrov1()Yerimbet Aitzhanov2Nurdaulet Shynarbek3
Faculty of Science and Technology, Oxus University, Tashkent 7000001, Uzbekistan
Department of Mathematics and Natural Sciences, SDU University, Kaskelen 040900, Kazakhstan
Department of Mathematics Education, SDU University, Kaskelen 040900, Kazakhstan
Show Author Information

Abstract

This paper explores the synergy between fuzzy set theory and genetic algorithms in the domain of epidemic modeling, shedding light on the broader challenges inherent in infectious diseases. In response to the evolving landscape of epidemiology, the study advocates for sophisticated modeling techniques to better understand and predict dynamic scenarios. The research thoroughly investigates the global stability of equilibrium solutions within a fuzzy epidemic model, accompanied by an inventive parameter estimation methodology. Utilizing Lyapunov functions, the paper establishes global stability outcomes for both disease-free and endemic equilibria. The novel approach, integrating continued fraction theory and a genetic algorithm, is applied to fit real-world epidemic data, offering insights crucial for public health planning and control measures. By addressing unexplored facets and bridging gaps in previous research, the paper contributes to a more comprehensive understanding of epidemic dynamics, providing a foundation for effective public health strategies in the face of infectious diseases.

References

[1]

L. A. Zadeh, Fuzzy sets, Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.

[2]

N. R. S. Ortega, P. C. Sallum, and E. Massad, Fuzzy dynamical systems in epidemic modelling, Kybernetes, vol. 29, no. 2, pp. 201–218, 2000.

[3]

L. C. D. Barros, M. B. F. Leite, and R. C. Bassanezi, The SI epidemiological models with a fuzzy transmission parameter, Comput. Math. Appl., vol. 45, nos. 10&11, pp. 1619–1628, 2003.

[4]

R. M. Jafelice, L. C. de Barros, R. C. Bassanezi, and F. Gomide, Fuzzy modeling in symptomatic HIV virus infected population, Bull. Math. Biol., vol. 66, no. 6, pp. 1597–1620, 2004.

[5]

E. Massad, M. N. Burattini, and N. R. Ortega, Fuzzy logic and measles vaccination: Designing a control strategy, Int. J. Epidemiol., vol. 28, no. 3, pp. 550–557, 1999.

[6]
R. Verma, S. P. Tiwari, and R. K. Upadhyay, Dynamical behaviors of fuzzy SIR epidemic model, in Proc. Conf. European Society for Fuzzy Logic and Technology, Warsaw, Poland, 2017, pp. 482–492.
[7]

M. Abdy, S. Side, S. Annas, W. Nur, and W. Sanusi, An SIR epidemic model for COVID-19 spread with fuzzy parameter: The case of Indonesia, Adv. Differ. Equ., vol. 2021, no. 1, p. 105, 2021.

[8]

A. M. Lyapunov, The general problem of the stability of motion, Int. J. Control, vol. 55, no. 3, pp. 531–534, 1992.

[9]
M. Einsiedler and T. Ward, Ergodic Theory. Berlin, Germany: Springer, 2011.
[10]
Macrotrends, Italy Population 1950-2023, https://www.macrotrends.net/countries/ITA/italy/population, 2023.
[11]
Johns Hopkins University, COVID-19 data repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, https://github.com/CSSEGISandData/COVID-19, 2023.
[12]
Kemenkes, COVID-19 Peta Sebaran, https://covid19.go.id/peta-sebaran, 2023.
[13]

Y. Liu, A. A. Gayle, A. Wilder-Smith, and J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel Med., vol. 27, no. 2, p. taaa021, 2020.

Fuzzy Information and Engineering
Pages 144-154
Cite this article:
Kadyrov S, Aitzhanov Y, Shynarbek N. Genetic Algorithm Approaches for Parameter Estimation and Global Stability in Fuzzy Epidemic Modeling. Fuzzy Information and Engineering, 2024, 16(2): 144-154. https://doi.org/10.26599/FIE.2024.9270038
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return