We aim to predict links in fuzzy social networks, where the existing methods based on common neighbors of two nodes are not effective. These methods are local measures that only work when the shortest distance between two nodes is less than or equal to two. Our method can handle cases where the shortest distance is between three and five. We define the concepts of link strength and path strength in a network and propose an algorithm for predicting links. We illustrate our method with a numerical example in a co-authorship network and discuss application areas in biomedical.
K. Das, S. Samanta, and M. Pal, Study on centrality measures in social networks: A survey, Soc. Netw. Anal. Min., vol. 8, no. 1, p. 13, 2018.
L. C. Freeman, Centrality in social networks conceptual clarification, Soc. Netw., vol. 1, no. 3, pp. 215–239, 1978.
L. Lü and T. Zhou, Link prediction in complex networks: A survey, Phys. A Stat. Mech. Appl., vol. 390, no. 6, pp. 1150–1170, 2011.
C. Ma, T. Zhou, and H. F. Zhang, Playing the role of weak clique property in link prediction: A friend recommendation model, Sci. Rep., vol. 6, no. 1, p. 30098, 2016.
X. S. He, M. Y. Zhou, Z. Zhuo, Z. Q. Fu, and J. G. Liu, Predicting online ratings based on the opinion spreading process, Phys. A Stat. Mech. Appl., vol. 436, pp. 658–664, 2015.
M. E. J. Newman, Clustering and preferential attachment in growing networks, Phys. Rev. E, vol. 64, no. 2, p. 025102, 2001.
R. Mahapatra, S. Samanta, M. Pal, and Q. Xin, Link prediction in social networks by neutrosophic graph, Int. J. Comput. Intell. Syst., vol. 13, no. 1, pp. 1699–1713, 2020.
L. Lü, C. H. Jin, and T. Zhou, Similarity index based on local paths for link prediction of complex networks, Phys. Rev. E, vol. 80, no. 4, p. 046122, 2009.
T. A. Sorensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons, Biol. Skr., vol. 5, pp. 1–34, 1948.
E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabási, Hierarchical organization of modularity in metabolic networks, Science, vol. 297, no. 5586, pp. 1551–1555, 2002.
E. A. Leicht, P. Holme, and M. E. J. Newman, Vertex similarity in networks, Phys. Rev. E, vol. 73, no. 2, p. 026120, 2006.
T. Zhou, L. Lü, and Y. C. Zhang, Predicting missing links via local information, Eur. Phys. J. B, vol. 71, no. 4, pp. 623–630, 2009.
L. A. Adamic and E. Adar, Friends and neighbours on web, Soc. Netw., vol. 25, no. 3, pp. 211–230, 2003.
J. Yang and X. D. Zhang, Predicting missing links in complex networks based on common neighbors and distance, Sci. Rep., vol. 6, no. 1, p. 38208, 2016.
T. Wang, X. S. He, M. Y. Zhou, and Z. Q. Fu, Link prediction in evolving networks based on popularity of nodes, Sci. Rep., vol. 7, no. 1, p. 7147, 2017.
J. Wu, J. Shen, B. Zhou, X. Zhang, and B. Huang, General link prediction with influential node identification, Phys. A Stat. Mech. Appl., vol. 523, pp. 996–1007, 2019.
T. Wen and Y. Deng, Identification of influencers in complex networks by local information dimensionality, Inf. Sci., vol. 512, pp. 549–562, 2020.
I. Ahmad, M. U. Akhtar, S. Noor, and A. Shahnaz, Missing link prediction using common neighbor and centrality based parameterized algorithm, Sci. Rep., vol. 10, no. 1, p. 364, 2020.
L. A. Zadeh, Fuzzy sets, Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.
K. R. Bhutani and A. Rosenfeld, Strong arcs in fuzzy graphs, Inf. Sci., vol. 152, pp. 319–322, 2003.
S. Bastani, A. K. Jafarabad, and M. H. F. Zarandi, Fuzzy models for link prediction in social networks, Int. J. Intell. Syst., vol. 28, no. 8, pp. 768–786, 2013.
T. M. Tuan, P. M. Chuan, M. Ali, T. T. Ngan, M. Mittal, and L. H. Son, Fuzzy and neutrosophic modeling for link prediction in social networks, Evol. Syst., vol. 10, no. 4, pp. 629–634, 2019.
R. Mahapatra, S. Samanta, M. Pal, and Q. Xin, RSM index: A new way of link prediction in social networks, J. Intell. Fuzzy Syst., vol. 37, no. 2, pp. 2137–2151, 2019.