PDF (1.2 MB)
Collect
Submit Manuscript
Article | Open Access

Maximal Ideal and Prime Ideal in an L-lattice

Aparna Jain1Iffat Jahan2()
Department of Mathematics, Shivaji College, University of Delhi, New Delhi 110027, India
Department of Mathematics, Ramjas College, University of Delhi, Delhi 110007, India
Show Author Information

Abstract

In this paper, the notions of an L-sublattice, L-ideal, and L-dual ideal of an L-lattice are introduced. The concepts of an L-maximal ideal and an L-prime ideal in an L-lattice are also defined. The present paper also gives the precise structures of an L-sublattice, L-ideal (dual ideal) generated by an L-subset of an L-lattice. Finally, it is proved that under certain conditions, an L-maximal ideal in an L-lattice is L-prime. It is important to note that, in our studies, the evaluation lattice changes from [0,1] to a lattice L and the parent structure shifts from an ordinary lattice to an L-lattice.

References

[1]

L. A. Zadeh, Fuzzy sets, Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.

[2]

A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., vol. 35, no. 3, pp. 512–517, 1971.

[3]

W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets Syst., vol. 8, no. 2, pp. 133–139, 1982.

[4]

S. Nanda, Fuzzy Lattices, Bull. Calcutta Math. Soc., vol. 81, pp. 201–202, 1989.

[5]

B. Yuan and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets Syst., vol. 35, no. 2, pp. 231–240, 1990.

[6]

N. Ajmal and K. V. Thomas, Fuzzy Lattices, Inform. Sci., vol. 79, no. 3&4, pp. 271–291, 1994.

[7]

N. Ajmal and K. V. Thomas, Fuzzy lattices-Ⅰ, J. Fuzzy Math., vol. 10, no. 2, pp. 255–274, 2002.

[8]

N. Ajmal and K. V. Thomas, Fuzzy lattices-Ⅱ, J. Fuzzy Math., vol. 10, no. 2, pp. 275–296, 2002.

[9]

A. Jain, Prime ideal theorem for fuzzy lattices, Int. J. Fuzzy Log. Intell. Syst., vol. 23, no. 4, pp. 436–447, 2023.

[10]

J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., vol. 18, no. 1, pp. 145–174, 1967.

[11]

W. J. Liu, Operations on fuzzy ideals, Fuzzy Sets Syst., vol. 11, no. 1–3, pp. 31–39, 1983.

[12]

D. S. Malik and J. N. Mordeson, R-primary L-representations of L-ideals, Inf. Sci., vol. 88, no. 1–4, pp. 227–246, 1996.

[13]
J. N. Mordeson and D. S. Malik, Fuzzy Commutative Algebra. Hackensack, NJ, USA: World Scientific, 1998.
[14]

N. Ajmal and I. Jahan, A study of normal fuzzy subgroups and characteristic fuzzy subgroups of a fuzzy group, Fuzzy Information and Engineering, vol. 4, no. 2, pp. 123–143, 2012.

[15]

N. Ajmal and I. Jahan, Nilpotency and theory of L-Subgroups of an L-Group, Fuzzy Information and Engineering, vol. 6, no. 1, pp. 1–17, 2014.

[16]

N. Ajmal and I. Jahan, Generated L-subgroup of an L-group, Iranian J. Fuzzy Syst., vol. 12, no. 2, pp. 129–136, 2015.

[17]

I. Jahan, N. Ajmal, and B. Davvaz, Subnormality and theory of L-subgroups, Eur. J. Pure Appl. Math., vol. 15, no. 4, pp. 2086–2115, 2022.

[18]
I. Jahan, Development of L-group theory, in Advances in Fuzzy Logic Systems, E. Dadios Ed. London, UK: IntechOpen, 2023.
[19]

I. Jahan and A. Manas, Maximal and frattini L-subgroups of an L-group, J. Intell. Fuzzy Syst., vol. 39, no. 3, pp. 3995–4007, 2020.

[20]

R. Kumar, Certain fuzzy ideals of rings redefined, Fuzzy Sets Syst., vol. 46, no. 2, pp. 251–260, 1992.

[21]

A. S. Prajapati and N. Ajmal, Maximal ideals of L-subrings, J. Fuzzy Math., vol. 15, no. 2, pp. 383–398, 2007.

[22]

A. S. Prajapati and N. Ajmal, Maximal ideals of L-subrings Ⅱ, J. Fuzzy Math., vol. 15, no. 2, pp. 399–411, 2007.

[23]
R. Balbes and D. Philip, Distributive lattices. Columbia, MI, USA: University of Missouri Press, 1975.
[24]
G. Gratzer, General Lattice Theory. New York, NY, USA: Academic Press, 1978.
Fuzzy Information and Engineering
Pages 244-263
Cite this article:
Jain A, Jahan I. Maximal Ideal and Prime Ideal in an L-lattice. Fuzzy Information and Engineering, 2024, 16(3): 244-263. https://doi.org/10.26599/FIE.2024.9270044
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return