Highlights
(1) Nutritional composition of chicory plant different parts.
(2) Summarized bioactivity related to appropriate compounds from chicory.
(3) Safety and health claims for chicory extract.
Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
(1) Nutritional composition of chicory plant different parts.
(2) Summarized bioactivity related to appropriate compounds from chicory.
(3) Safety and health claims for chicory extract.
In the present day, the investigation of herbal plants is essential to maintain a healthy and disease-free lifestyle by adhering to traditional medicinal systems and developing novel plant-based pharmaceuticals for a wide range of therapeutic applications. Nature provides a variety of therapeutic ingredients in the form of the versatile medicinal plant known as ‘chicory’ (Cichorium intybus). It has a wide geographical distribution (mostly in Asia, South Africa, and Europe) and a long history of use in folkloric treatments. Folk healers utilize this herb to treat various diseases, including diabetes and liver issues. Chicory (C. intybus L.) is a popular food plant in many parts of the world, and its unique phytochemical content has made it a staple in traditional medicine. It is a viable source of biologically relevant elements (potassium (K), iron (Fe), calcium (Ca)), vitamins (vitamin A, B1, B2, C), and bioactive compounds (inulin, sesquiterpene lactones, coumarin derivatives, cichoric acid, phenolic acids), with several biological effects including hepatoprotective, cardiovascular, antioxidant, anticancer, reproductive, anti-diabetic, anti-inflammatory, analgesic, antimicrobial, and other pharmacological effects. This review was created to highlight the chemical ingredients and medical significance of C. intybus based on recent literature.
Pouille, C. L., Ouaza, S., Roels, E., et al. Chicory: understanding the effects and effectors of this functional food. Nutrients, 2022, 14: 957. https://doi.org/10.3390/nu14050957
Atef, M., El-Gendi, Y. I. A. B., Amer, M. A., et al. Antioxidant, hepatoprotective and in vitro cytotoxic activities of Cichorium intybus L. extract. Advances in Animal and Veterinary Sciences, 2020, 9: 137–142. https://doi.org/10.17582/journal.aavs/2021/9.1.137.142
Abrams, S. A., Griffin, I. J., Hawthorne, K. M., et al. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. American Journal of Clinical and Nutrition, 2005, 82: 471–476. https://doi.org/10.1093/ajcn/82.2.471
Parnell, J. A., Reimer, R. A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. American Journal of Clinical Nutrition, 2009, 89: 1751–1759. https://doi.org/10.3945/ajcn.2009.27465
Vogt, L., Meyer, D., Pullens, G., et al. Immunological properties of inulin-type fructans. Critical Review Food of Science and Nutrition, 2015, 55: 414–436. https://doi.org/10.1080/10408398.2012.656772
Dicksved, J., Jansson, J. K., Lindberg, J. E. Fecal microbiome of growing pigs fed a cereal based diet including chicory ( Cichorium intybus L.) or ribwort ( Plantago lanceolata L.) forage. Journal of Animal Science Biotechnolgy, 2015, 6: 53. https://doi.org/10.1186/s40104-015-0054-8
Ivarsson, E., Frankow-Lindberg, B. E., Andersson, H. K., et al. Growth performance, digestibility and faecal coliform bacteria in weaned piglets fed a cereal-based diet including either chicory ( Cichorium intybus L) or ribwort ( Plantago lanceolata L) forage. Animal, 2011, 5: 558–564. https://doi.org/10.1017/S1751731110002193
Saeed, M., Abd El-Hack, M.E., Alagawany, M., et al. Chicory ( Cichorium intybus) herb: chemical composition, pharmacology, nutritional and healthical applications. International Journal of Pharmacolgy, 2017, 13: 351–360. https://doi.org/10.3923/ijp.2017.351.360
Chandra, K., Jain, S. K. Therapeutic potential of Cichorium intybus in lifestyle disorders: a review. Asian Journal of Pharmaceutical and Clinical Research, 2016, 9: 20–25.
Anju Javed, G., Javaid, R., Ahmed, F. Kasni ( Cichorium intybus): a unani hepatoprotective drug. Journal of Drug Delivery Therapy, 2020, 10: 238–241. https://doi.org/10.22270/jddt.v10i4.4162
Sharma, M., Afaque, A., Dwivedi, S., et al. Cichorium intybus attenuates streptozotocin induced diabetic cardiomyopathy via inhibition of oxidative stress and inflammatory response in rats. Interdisciplinary Toxicology, 2019, 12: 111–119. https://doi.org/10.2478/intox-2019-0013
Shin, H., Kim, J., Heo, H., et al. Comparison of the antioxidant activities and functional components of roasted chicory roots extracts produced using different ethanol concentrations. Journal of the Korean Society of Food Science and Nutrition, 2024, 53: 272–280. https://doi.org/10.3746/jkfn.2024.53.3.272
Nørbæk, R., Nielsen, K., Kondo, T. Anthocyanins from flowers of Cichorium intybus. Phytochemistry, 2002, 60: 357–359. https://doi.org/10.1016/s0031-9422(02)00055-9
Eray, N., Kartal, D., Çelik, I. Antioxidant properties of Cichorium intybus L.(chicory) extracts and their cytotoxic effects on HepG2 cells. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 2020, 30: 444–453. https://doi.org/10.29133/yyutbd.686993
Peña-Espinoza, M., Valente, A. H., Thamsborg, S. M., et al. Antiparasitic activity of chicory ( Cichorium intybus) and its natural bioactive compounds in livestock: a review. Parasite Vectors, 2018, 11: 475. https://doi.org/10.1186/s13071-018-3012-4
Rahimullah, T. G. Phytochemical and antibacterial screening of Cichorium intybus seeds use in traditional medicine systems in Pakistan. International Journal of Basic Medicinal Science and Pharmacology (IJBMSP), 2019, 8: 2049.
Shad, M. A., Nawaz, H., Rehman, T., et al. Determination of some biochemicals, phytochemicals and antioxidant properties of different parts of Cichorium intybus L.: a comparative study. The Journal of Animal & Plant Sciences, 2013, 23: 1060–1066.
Judzentiene, A., Budiene, J. Volatile constituents from aerial parts and roots of Cichorium intybus L. (chicory) grown in Lithuania. Chemija, 2008, 19: 25–28.
Mahdi, T., Hossein, A. Changes in kaempferol content of chicory ( Cichorium intybus L.) under water deficit stresses and planting densities. Journal of Medicinal Plants Research, 2014, 8: 30–35. https://doi.org/10.5897/JMPR10.732
Sharifi-Rad, J., Sureda, A., Tenore, G. C., et al. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules, 2017, 22: 70. https://doi.org/10.3390/molecules22010070
Rasheda, K., Butnariu, M. Antimicrobial and antioxidant effects of Cichorium intybus aerial parts and chemical profile. Egyptian Journal of Chemistry, 2021, 64: 4689–4696. https://doi.org/10.21608/ejchem.2021.83913.4112
Migliorini, A. A., Piroski, C. S., Daniel, T. G., et al. Red chicory ( Cichorium intybus) extract rich in anthocyanins: chemical stability, antioxidant activity, and antiproliferative activity in vitro. Journal of Food Science, 2019, 84: 990–1001. https://doi.org/10.1111/1750-3841.14506
Chandra, K., Jain, V., Jabin, A., et al. Effect of Cichorium intybus seeds supplementation on the markers of glycemic control, oxidative stress, inflammation, and lipid profile in type 2 diabetes mellitus: a randomized, double-blind placebo study. Phytotherapy Research, 2020, 34: 1609–1618. https://doi.org/10.1002/ptr.6624
Le Bastard, Q., Chapelet, G., Javaudin, F., et al. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. European Journal of Clinical Microbiology Infection Diseases, 2020, 39: 403–413. https://doi.org/ 10.1007/s10096-019-03721-w
Janda, K., Gutowska, I., Geszke-Moritz, M., et al. The common cichory ( Cichorium intybus L.) as a source of extracts with health-promoting properties—a review. Molecules, 2021, 26: 1814. https://doi.org/10.3390/molecules26061814
Perović, J., Šaponjac, V. T., Kojić, J., et al. Chicory ( Cichorium intybus L.) as a food ingredient–nutritional composition, bioactivity, safety, and health claims: a review. Food Chemistry, 2021, 336: 127676. https://doi.org/10.1016/j.foodchem.2020.127676
Papetti, A., Mascherpa, D., Carazzone, C., et al. Identification of organic acids in Cichorium intybus inhibiting virulence related properties of oral pathogenic bacteria. Food Chemistry, 2013, 138: 1706–1712. https://doi.org/10.1016/j.foodchem.2012.10.148
Cavin, C., Delannoy, M., Malnoe, A., et al. Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochemical and Biophysical Research Communications, 2005, 327: 742–749. https://doi.org/10.1016/j.bbrc.2004.12.061
Ripoll, C., Schmidt, B., Ilic, N., et al. Anti-inflammatory effects of a sesquiterpene lactone extract from chicory ( Cichorium intybus L.) roots. Natural Product Communications, 2007, 2: 717–722. https://doi.org/10.1177/1934578X0700200702
Meng, X., Lü, H., Ding, X., et al. Sesquiterpene lactones with anti-inflammatory and cytotoxic activities from the roots of Cichorium intybus. Phytochemistry, 2022, 203: 113377. https://doi.org/10.1016/j.phytochem.2022.113377
Rizvi, W., Fayazuddin, M., Shariq, S., et al. Anti-inflammatory activity of roots of Cichorium intybus due to its inhibitory effect on various cytokines and antioxidant activity. Ancient Science of Life, 2014, 34: 44–49. https://doi.org/10.4103/0257-7941.150780
Ahmed, L. A., Ramadan, R. S., Mohamed, R. A. Biochemical and histopathological studies on the water extracts of marjoram and chicory herbs and their mixture in obese rats. Pakistan Journal of Nutrition, 2009, 8: 1581–1587. https://doi.org/10.3923/pjn.2009.1581.1587
Muthusamy, V. S., Anand, S., Sangeetha, K. N., et al. Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chemico-Biological Interactions, 2008, 174: 69–78. https://doi.org/10.1016/j.cbi.2008.04.016
Rub, R. A., Siddiqui, R., Ali, A. M., et al. Screening of antioxidant and antidiabetic potential of polyphenol rich fraction from Cichorium intybus. Pharmacognosy Journal, 2014, 6: 92–98. https://doi.org/10.5530/pj.2014.4.15
Kim, M., Shin, H. K. The water-soluble extract of chicory reduces glucose uptake from the perfused jejunum in rats. The Journal of Nutrition, 1996, 126: 2236–2242. https://doi.org/10.1093/jn/126.9.2236
Ferrare, K., Bidel, L. P. R., Awwad, A., et al. Increase in insulin sensitivity by the association of chicoric acid and chlorogenic acid contained in a natural chicoric acid extract (NCRAE) of chicory ( Cichorium intybus L.) for an antidiabetic effect. Journal of Ethnopharmacology, 2018, 215: 241–248. https://doi.org/10.1016/j.jep.2017.12.035
Pushparaj, P. N., Low, H. K., Manikandan, J., et al. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 2007, 111: 430–434. https://doi.org/ 10.1016/j.jep.2006.11.028
Tousch, D., Lajoix, A. D., Hosy, E., et al. Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochemical and Biophysical Research Communications, 2008, 377: 131–135. https://doi.org/10.1016/j.bbrc.2008.09.088
Ghamarian, A., Abdollahi, M., Su, X., et al. Effect of chicory seed extract on glucose tolerance test (GTT) and metabolic profile in early and late stage diabetic rats. DARU Journal of Pharmaceutical Sciences, 2012, 20: 56. https://doi.org/10.1186/2008-2231-20-56
Kaskoos, R. A. Anti-diabetic activity of Cichorium intybus seeds on STZ-induced diabetic rats. International Research Journal of Pharmacy, 2012, 3: 161–164.
Jurgonbski, A., Milala, J., Jusbkiewicz, J., et al. Composition of chicory root, peel, seed and leaf ethanol extracts and biological properties of their non-inulin fractions. Food Technology and Biotechnology, 2011, 49: 40–47.
Samarghandian, S., Borji, A., Tabasi, S. H. Effects of Cichorium intybus Linn. on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovascular and Hematological Disorders Drug Targets, 2013, 13: 231–236. https://doi.org/10.2174/1871529x13666131129103139
Ziamajidi, N., Khaghani, S., Hassanzadeh, G., et al. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1. Food and Chemical Toxicology, 2013, 58: 198–209. https://doi.org/10.1016/j.fct.2013.04.018
Nishimura, M., Ohkawara, T., Kanayama, T., et al. Effects of the extract from roasted chicory ( Cichorium intybus L.) root containing inulin-type fructans on blood glucose, lipid metabolism, and fecal properties. Journal of Traditional and Complementary Medicine, 2015, 5: 161–167. https://doi.org/10.1016/j.jtcme.2014.11.016
Tchakam, P. D., Lunga, P. K., Kowa, T. K., et al. Antimicrobial and antioxidant activities of the extracts and compounds from the leaves of Psorospermum aurantiacum Engl. and Hypericum lanceolatum Lam. BMC Complementary and Alternative Medicine, 2012, 12: 136. https://doi.org/10.1186/1472-6882-12-136
Rani, P., Khullar, N. Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi. Phytotherapy Research, 2004, 18: 670–673. https://doi.org/10.1002/ptr.1522
Petrovic, J., Stanojkovic, A., Comic, L., et al. Antibacterial activity of Cichorium intybus. Fitoterapia, 2004, 75: 737–739. https://doi.org/10.1016/j.fitote.2004.05.001
Rehman, A., Ullah, N., Ullah, H., et al. Antibacterial and antifungal study of Cichorium intybus. Asian Pacific Journal of Tropical Disease, 2014, 4: S943–S945. https://doi.org/10.1016/S2222-1808(14)60763-5
Abdallah, E. M. Plants: an alternative source for antimicrobials. Journal of Applied Pharmaceutical Science, 2011, 1: 16–20.
Jeong, D., Kim, D., Chon, J., et al. The antimicrobial activity of the crude extracts from Cichorium intybus L. (Chicory) against Bacillus cereus in various dairy foods. Journal of Milk Science and Biotechnology, 2016, 34: 239–244. https://doi.org/10.22424/jmsb.2016.34.4.239
Szymonik-Lesiuk, S., Czechowska, G., Stryjecka-Zimmer, M., et al. Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. Journal of Hepato-Biliary-Pancreatic Surgery, 2003, 10: 309–315. https://doi.org/10.1007/s00534-002-0824-5
Preethi, K. C., Kuttan, R. Hepato and reno protective action of Calendula officinalis L. flower extract. Indian Journal of Experimental Biology, 2009, 47: 163–168.
El-Sayed, Y. S., Lebda, M. A., Hassinin, M., et al. Retraction: chicory ( Cichorium intybus L.) root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity. PLoS ONE, 2017, 12: e0173587. https://doi.org/10.1371/journal.pone.0173587
Elgengaihi, S., Mossa, A. T. H., Refaie, A. A., et al. Hepatoprotective efficacy of Cichorium intybus L. extract against carbon tetrachloride-induced liver damage in rats. Journal of Dietary Supplements, 2016, 13: 570–584. https://doi.org/10.3109/19390211.2016.1144230
Gilani, A. H., Janbaz, K. H. Evaluation of the liver protective potential of Cichorium intybus seed extract on acetaminophen and CC14-induced damage. Phytomedicine, 1994, 1: 193–197. https://doi.org/10.1016/S0944-7113(11)80064-4
Zafar, R., Mujahid Ali, S. Anti-hepatotoxic effects of root and root callus extracts of Cichorium intybus L. Journal of Ethnopharmacology, 1998, 63: 227–231. https://doi.org/10.1016/S0378-8741(98)00087-7
Ignat, M. V., Coldea, T. E., Salant, L. C., et al. Plants of the spontaneous flora with beneficial action in the management of diabetes, hepatic disorders, and cardiovascular disease. Plants, 2021, 10: 216. https://doi.org/10.3390/plants10020216
Mohafrash, S. M. M., Mossa, A. H. Herbal syrup from chicory and artichoke leaves ameliorate liver damage induced by deltamethrin in weanling male rats. Environmental Science and Pollution Research International, 2020, 27: 7672–7682. https://doi.org/10.1007/s11356-019-07434-7
Moloudi, M. R., Hassanzadeh, K., Abdi, M., et al. Hepatoprotective effect of the hydroalcoholic extract of Cichorium intybus in a rat model of obstructive cholestasis. Arabic Journal of Gastroenterolgy, 2021, 22: 34–39. https://doi.org/10.1016/j.ajg.2020.08.006
Keshk, W. A., Soliman, N. A., Ali, D. A., et al. Mechanistic evaluation of AMPK/SIRT1/FXR signaling axis, inflammation, and redox status in thioacetamide-induced liver cirrhosis: the role of Cichorium intybus Linn (chicory)-supplemented diet. Journal of Food Biochemistry, 2019, 43: e12938. https://doi.org/10.1111/jfbc.12938
Saybel, O. L., Rendyuk, T. D., Dargaeva, T. D., et al. Phenolic compounds and hepatoprotective activity of chicory herb extract. Development and Registration of Medicines, 2021, 10: 36–45. https://doi.org/10.33380/2305-2066-2021-10-4-36-45
Iqbal, Y., Ponnampalam, E. N., Suleria, H. A. R., et al. LC-ESI/QTOF MS profiling of chicory and lucerne polyphenols and their antioxidant activities. Antioxidants, 2021, 10: 932. https://doi.org/10.3390/antiox10060932
Krepkova, L. V., Babenko, A. N., Lemyaseva, S. V., et al. Modulation of hepatic functions by chicory ( Cichorium intybus L.) extract: preclinical study in rats. Pharmaceuticals, 2023, 16: 1471. https://doi.org/10.3390/ph16101471
Alkandahri, M. Y., Pamungkas, B. T., Oktoba, Z., et al. Hepatoprotective effect of kaempferol: a review of the dietary sources, bioavailability, mechanisms of action, and safety. Advanced Pharmacological Pharmaceutical Science, 2023, 2023: 1387665. https://doi.org/10.1155/2023/1387665
Liu, H., Wang, Q., Liu, Y., et al. Antimicrobial and antioxidant activities of Cichorium intybus root extract using orthogonal matrix design. Journal of Food Science, 2013, 78: 258–263. https://doi.org/ 10.1111/1750-3841.12040
Heimler, D., Isolani, L., Vignolini, P., et al. Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chemistry, 2009, 114: 765–770. https://doi.org/10.1016/j.foodchem.2008.10.010
Khalaf, A. H., El-Saadani, R. M., El-Desouky, A. I., et al. Antioxidant and antimicrobial activity of gamma-irradiated chicory ( Cichorium intybus L.) leaves and roots. Journal of Food Measurement and Characterization, 2018, 12: 1843–1851. https://doi.org/10.1007/s11694-018-9798-0
Jurgoński, A., Juśbkiewicz, J., Zdunczyk, Z., et al. Caffeoylquinic acid-rich extract from chicory seeds improves glycemia, atherogenic index, and antioxidant status in rats. Nutrition, 2012, 28: 300–306. https://doi.org/10.1016/j.nut.2011.06.010
Montefusco, A., Semitaio, G., Marrese, P. P., et al. Antioxidants in varieties of chicory ( Cichorium intybus L.) and wild poppy ( Papaver rhoeas L.) of Southern Italy. Journal of Chemistry, 2015, 2015: 923142. https://doi.org/10.1155/2015/923142
Fathi, M., Hoseini, M., Alizadeh, S., et al. Effects of chicory ( Cichorium intybus L.) distillation wastewater on antioxidant status, immune response, cecal microbial population, growth performance and meat quality in broiler chickens. Livestock Science, 2024, 282: 105442. https://doi.org/10.1016/j.livsci.2024.105442
Abrams, S. A., Hawthorne, K. M., Aliu, O., et al. An insulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. The Journal of Nutrition, 2007, 137: 2208–2212. https://doi.org/10.1093/jn/137.10.2208
Tzamaloukas, O., Athanasiadou, S., Kyriazakis, I., et al. The effect of chicory ( Cichorium intybus) and sulla ( Hedysarum coronarium) on larval development and mucosal cell responses of growing lambs challenged with Teladorsagia circumcincta. Parasitology, 2006, 132: 419–426. https://doi.org/10.1017/S0031182005009194
Oh, S. M., Kim, H. R., Park, Y. J., et al. Ethanolic extract of dandelion ( Taraxacum mongolicum) induces estrogenic activity in MCF-7 cells and immature rats. Chinese Journal of Natural Medicine, 2015, 13: 808–814. https://doi.org/10.1016/S1875-5364(15)30084-4
Thoppil, R. J., Bishayee, A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World Journal of Hepatopathology, 2011, 3: 228–249. https://doi.org/10.4254/wjh.v3.i9.228
Ateba, S. B., Mvondo, M. A., Ngeu, S. T., et al. Natural terpenoids against female breast cancer: a 5-year recent research. Current Medical Chemistry, 2018, 25: 3162–3213. https://doi.org/10.2174/0929867325666180214110932
Ovesna, Z., Vachalkova, A., Horvathova, K. Taraxasterol and beta-sitosterol: new naturally compounds with chemoprotective/chemopreventive effects. Neoplasma, 2004, 51: 407–414.
Wang, L. M., Xie, K. P., Huo, H. N., et al. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ERalpha in human breast cancer MCF-7 cells. Asian Pacific Journal of Cancer Prevention, 2012, 13: 1431–1437. https://doi.org/10.7314/apjcp.2012.13.4.1431
Yee, S. B., Choi, H. J., Chung, S. W., et al. Growth inhibition of luteolin on HepG2 cells is induced via p53 and Fas/Fas-ligand besides the TGF beta pathway. International Journal of Oncology, 2015, 47: 747–754. https://doi.org/10.3892/ijo.2015.3053
Sato, Y., Sasaki, N., Saito, M., et al. Luteolin attenuates doxorubicin-induced cytotoxicity to MCF-7 human breast cancer cells. Biological and Pharmaceutical Bulletin, 2015, 38: 703–709. https://doi.org/10.1248/bpb.b14-00780
Jang, J. H., Park, C. Y., Sung, E. G., et al. Lactucin induces apoptosis through reactive oxygen species-mediated BCl-2 and CFLARL downregulation in Caki-1 cells. Genes Genomics, 2021, 43: 1199–1207. https://doi.org/10.1007/s13258-021-01142-8
Zhu, C. S., Zhang, B., Lin, Z. J., et al. Relationship between high-performance liquid chromatography fingerprints and uric acid-lowering activities of Cichorium intybus L. Molecules, 2015, 20: 9455–9467. https://doi.org/10.3390/molecules20059455
Liu, Q., Chen, Y., Shen, C., et al. Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-kappaB. FASEB Journal, 2017, 31: 1494–1507. https://doi.org/10.1096/fj.201601071R
Sun, X., Zhang, X., Zhai, H., et al. Chicoric acid (CA) induces autophagy in gastric cancer through promoting endoplasmic reticulum (ER) stress regulated by AMPK. Biomedical Pharmacotherapy, 2019, 118: 109144. https://doi.org/10.1016/j.biopha.2019
Greenwell, M., Rahman, P. K. Medicinal plants: their use in anticancer treatment. International Journal of Pharmaceutical Science and Research, 2015, 6: 4103–4112. https://doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12
Muthusamy, V. S., Saravanababu, C., Ramanathan, M., et al. Inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory ( Cichorium intybus) salad leaves. British Journal of Nutrition, 2010, 104: 813–823. https://doi.org/10.1017/S0007114510001480
Balbaa, S. I., Zaki, A. Y., Abdel-Wahab, S. M., et al. Preliminary phytochemical and pharmacological investigations of the roots of different varieties of Cichorium intybus. Planta Medical, 1973, 24: 133–144. https://doi.org/10.1055/s-0028-1099480
Sakurai, N., Iizuka, T., Nakayama, S., et al. Vasorelaxant activity of caffeic acid derivatives from Cichorium intybus and Equisetum arvense. Yakugaku Zasshi, 2003, 123: 593–598. https://doi.org/10.1248/yakushi.123.593
Noori, S., Mahboob, T. Role of electrolytes disturbances and Na+-K+-ATPase in cisplatin-induced renal toxicity and effects of ethanolic extract of Cichorium intybus. Pakistan Journal of Pharmaceutical Science, 2012, 25: 857–862.
Schumacher, E., Vigh, E., Molnár, V., et al. Thrombosis preventive potential of chicory coffee consumption: a clinical study. Phytotherapy Research, 2011, 25: 744–748. https://doi.org/10.1002/ ptr.3481
Schmidt, B. M., Ilic, N., Poulev, A., et al. Toxicological evaluation of a chicory root extract. Food and Chemical Toxicology, 2007, 45: 1131–1139. https://doi.org/10.1016/j.fct.2006.12.019
Conforti, F., Ioele, G., Statti, G. A., et al. Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food and Chemical Toxicology, 2008, 46: 3325–3332. https://doi.org/10.1016/j.fct.2008.08.004
Olsen, N. J., Branch, V. K., Jonnala, G., et al. Phase 1, placebo-controlled, dose escalation trial of chicory root extract in patients with osteoarthritis of the hip or knee. BM Musculoskeletal Disorders, 2010, 11: 1–7. https://doi.org/10.1186/1471-2474-11-156
Chandra, K., Khan, W., Jettey, S., et al. Antidiabetic, toxicological, and metabolomic profiling of aqueous extract of Cichorium intybus seeds. Pharmacognosy Magazine, 2018, 14: 377–383. https://doi.org/10.4103/pm.pm58317
Nowrouzi, P. S., Mazani, M., Rezagholizadeh, L., et al. Mechanism and clinical aspects of the effects of chicory on diabetes. Asian Journal of Research in Medical and Pharmaceutical Science, 2017, 1: 1–11. https://doi.org/10.9734/AJRIMPS/2017/35273
Lightowler, H., Thondre, S., Holz, A., et al. Replacement of glycaemic carbohydrates by inulin-type fructans from chicory ( Oligofructose inulin) reduces the postprandial blood glucose and insulin response to foods: report of two double-blind, randomized, controlled trials. European Journal of Nutrition, 2018, 57: 1259–1268. https://doi.org/10.1007/s00394-017-1409-z
Farhangi, M. A., Javid, A. Z., Dehghan, P. The effect of enriched chicory inulin on liver enzymes, calcium homeostasis and hematological parameters in patients with type 2 diabetes mellitus: a randomized placebo-controlled trial. Primary Care Diabetes, 2016, 10: 265–271. https://doi.org/10.1016/j.pcd.2015.10.009
EFSA Panel on Dietetic Products Nutrition and Allergies. Scientific opinion on the substantiation of a health claim related to non-digestible carbohydrates and a reduction of post-prandial glycaemic 806 responses pursuant to Article 13 (5) of Regulation (EC) No 1924/2006 1. EFSA Journal, 2014, 12: 1–13. https://doi.org/10.2903/j.efsa.2014.3513
Drabińska, N., Zieliński, H., Krupa-Kozak, U. Technological benefits of inulin-type fructans application in gluten-free products-a review. Trends in Food Science & Technology, 2016, 56: 149–157. https://doi.org/10.1016/j.jpgs.2016.08.015
Massoud, I., Amin, A., Elgindy, A. A. Chemical and technological studies on chicory ( Cichorium Intybus L.) and its applications in some functional food. International Journal of Advance Agricultural Research, 2009, 14: 735–756.
Choi, H. S., Choi, H. G., Choi, Y. S., et al. Effect of chicory fiber and smoking on quality characteristics of restructured sausages. Korean Journal for Food Science of Animal Resources, 2016, 36: 131–136. https://doi.org/10.5851/kosfa.2016.36.1.131
Wang, Q., Cui, J. Perspectives and utilization technologies of chicory ( Cichorium intybus L.): a review. African Journal of Biotechnology, 2011, 10: 1966–1977. https://doi.org/10.5897/AJB10.587
Jeong, D., Kim, D. H., Oh, Y. T., et al. Production of bioactive yoghurt containing Cichorium intybus L. (chicory) extract-preliminary study. Journal of Milk Science and Biotechnology, 2017, 35: 9–15. https://doi.org/10.22424/jmsb.2017.35.1.009
Kumar, D., DC, R., Alam, T., et al. Effect of dried chicory root extract on sensory and physical characteristics of yoghurt-ice cream with addition of butter milk using response surface methodology. Journal of Food and Dairy Technologies, 2018, 5: 16–25.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).