AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Inflammation and gut microbiota in the alcoholic liver disease

Yan Gao1,2( )
Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
Show Author Information

Highlights

(1) Inflammation is essential to pathogenesis of hepatic diseases, especially inflammasome.

(2) We mainly pay close attention to the activation and function of inflammasome in ALD.

(3) After alcohol stimulation, the metabolites of gut microbiota will change, and then create a vicious cycle to liver.

Graphical Abstract

Alcohol consumption promotes the second stroke of liver cells via action of oxidative stress-related lipid peroxidation and inflammatory cytokines, resulting into inflammatory response. Therefore, inflammasomes are multi-protein complexes which realize the risk and gather to regulate caspase-1 activation. The inflammasome activation particularly needs two signals in other to enlarge inflammation. Additionally, gut microbes are involved in the regulation of inflammation by constructing a gut specific immune system rather than reusing the infectious pathogens. After alcohol stimulation, the metabolites of gut microbiota will change, and then create a vicious cycle to liver.

Abstract

Alcoholic liver disease (ALD) covers including but not limited to oxidative stress. Alcohol, as the primary stroke, promote the second stroke of liver cells via action of oxidative stress-related lipid peroxidation and inflammatory cytokines, resulting into inflammatory response. Inflammation is essential to pathogenesis of hepatic diseases. Therefore, inflammasomes are multi-protein complexes which realize the risk and gather to regulate caspase-1 activation, activating cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Unlike inflammatory responses, the inflammasome activation particularly needs two signals in other to enlarge inflammation. It has been discovered in several human hepatic diseases and realized to be a major contributor to organic damage. Especially, we mainly pay close attention to the activation and function of inflammasome in ALD. Additionally, gut microbes are involved in the regulation of inflammation by constructing a gut specific immune system rather than reusing the infectious pathogens. Fungal flora has an auxiliary effect on inflammatory response, metabolic disorders, and bacterial microbial regulation and host defense, while alcohol abuse causes an imbalance in the microflora of human gut as the feed-back. After alcohol stimulation, the metabolites of gut microbiota will change, and then create a vicious cycle to liver. In brief, the application and translation of the current review promises new approaches in the treatment of ALD, especially from inflammasomes and gut microbiota.

References

[1]

Wang, W. J., Xiao, P., Xu, H. Q., et al. Growing burden of alcoholic liver disease in China: a review. World Journal of Gastroenterology, 2019, 25: 1445–1456. https://doi.org/10.3748/wjg.v25.i12.1445

[2]

Ghosh Dastidar, S., Warner, J. B., Warner, D. R., et al. Rodent models of alcoholic liver disease: role of binge ethanol administration. Biomolecules, 2018, 8: 3. https://doi.org/10.3390/biom8010003

[3]

Grant, B. F., Goldstein, R. B., Saha, T. D., et al. Epidemiology of DSM-5 alcohol use disorder: results from the national epidemiologic survey on alcohol and related conditions III. JAMA Psychiatry, 2015, 72: 757–766. https://doi.org/10.1001/jamapsychiatry.2015.0584

[4]
Henry, J. A., Moloney, C., Rivas, C., et al. Increase in alcohol related deaths: is hepatitis C a factor? Journal of Clinical Pathology, 2002 , 55: 704–707. https://doi.org/10.1136/jcp.55.9.704
[5]

Szabo, G. Gut-liver axis in alcoholic liver disease. Gastroenterology, 2015, 148: 30–36. https://doi.org/10.1053/j.gastro.2014.10.042

[6]

Yan, C. Y., Hu, W. T., Tu, J. Q., et al. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. Journal of Translation Medicine, 2023, 21: 300. https://doi.org/10.1186/s12967-023-04166-8

[7]

Lozano-Ruiz, B., González-Navajas, J. M. The emerging relevance of AIM2 in liver disease. International Journal of Molecular Sciences, 2020, 21: 6535. https://doi.org/10.3390/ijms21186535

[8]

Bawa, M., Saraswat, V. A. Gut-liver axis: role of inflammasomes. Journal of Clinical and Experimental Hepatology, 2013, 3: 141–149. https://doi.org/10.1016/j.jceh.2013.03.225

[9]

Gao, B., Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology, 2011, 141: 1572–1585. https://doi.org/10.1053/j.gastro.2011.09.002

[10]

Lieber, C. S. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol, 2004, 34: 9–19. https://doi.org/10.1016/j.alcohol.2004.07.008

[11]

Fernández-Checa, J. C., Kaplowitz, N., García-Ruiz, C., et al. Mitochondrial glutathione: importance and transport. Seminars in Liver Disease, 1998, 18: 389–401. https://doi.org/10.1055/s-2007-1007172

[12]

Luan, J. Y., Ju, D. W. Inflammasome: a double-edged sword in liver diseases. Frontiers in Immunology, 2018, 9: 2201. https://doi.org/10.3389/fimmu.2018.02201

[13]

Shi, C. J., Yang, H. Q., Zhang, Z. H. Involvement of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome in the pathogenesis of liver diseases. Frontiers in Cell and Developmental Biology, 2020, 8: 139. https://doi.org/10.3389/fcell.2020.00139

[14]

Xu, T., Du, Y., Fang, X. B., et al. New insights into Nod-like receptors (NLRs) in liver diseases. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10: 1–16.

[15]

Szabo, G., Csak, T. Inflammasomes in liver diseases. Journal of Hepatology, 2012, 57: 642–654. https://doi.org/10.1016/j.jhep.2012.03.035

[16]

Jackson, D. N., Theiss, A. L. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes, 2020, 11: 285–304. https://doi.org/10.1080/19490976.2019.1592421

[17]

Ong, H. S., Yim, H. C. H. Microbial factors in inflammatory diseases and cancers. Advances in Experimental Medicine and Biology, 2017, 1024: 153–174. https://doi.org/10.1007/978-981-10-5987-2_7

[18]
Macia, L., Tan, J., Vieira, A. T., et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 2015 , 6: 6734. https://doi.org/10.1038/ncomms7734
[19]

Zheng, D., Kern, L., Elinav, E. The NLRP6 inflammasome. Immunology, 2021, 162: 281–289. https://doi.org/10.1111/imm.13293

[20]

Kummer, J. A., Broekhuizen, R., Everett, H., et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. Journal of Histochemistry and Cytochemistry, 2007, 55: 443–452. https://doi.org/10.1369/jhc.6A7101.2006

[21]

Gordon, S., Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity, 2010, 32: 593–604. https://doi.org/10.1016/j.immuni.2010.05.007

[22]

Csak, T., Ganz, M., Pespisa, J., et al. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology, 2011, 54: 133–144. https://doi.org/10.1002/hep.24341

[23]

Watanabe, A., Sohail, M. A., Gomes, D. A., et al. Inflammasome-mediated regulation of hepatic stellate cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2009, 296: G1248–1257. https://doi.org/10.1152/ajpgi.90223.2008

[24]

Rawat, R., Cohen, T. V., Ampong, B., et al. Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. American Journal of Pathology, 2010, 176: 2891–900. https://doi.org/10.2353/ajpath.2010.090058

[25]

Yan, W., Chang, Y., Liang, X. Y., et al. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology, 2012, 55: 1863–1875. https://doi.org/10.1002/hep.25572

[26]

de Carvalho Ribeiro, M., Szabo, G. Role of the inflammasome in liver disease. Annual Review of Pathology, 2022, 17: 345–365. https://doi.org/10.1146/annurev-pathmechdis-032521-102529

[27]

McClain, C. J., Cohen, D. A., Dinarello, C. A., et al. Serum interleukin-1 (IL-1) activity in alcoholic hepatitis. Life Sciences, 1986, 39: 1479–1485. https://doi.org/10.1016/0024-3205(86) 90554-0

[28]

Petrasek, J., Bala, S., Csak, T., et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. Journal of Clinical Investigation, 2012, 122: 3476–3489. https://doi.org/10.1172/JCI60777

[29]

Petrasek, J., Iracheta-Vellve, A., Saha, B., et al. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. Journal of Leukocyte Biology, 2015, 98: 249–256. https://doi.org/10.1189/jlb.3AB1214-590R

[30]

Hoyt, L. R., Randall, M. J., Ather, J. L., et al. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biology, 2017, 12: 883–896. https://doi.org/10.1016/j.redox.2017.04.020

[31]

Fernandes-Alnemri, T., Yu, J. W., Datta, P., et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature, 2009, 458: 509–513. https://doi.org/10.1038/nature07710

[32]

Hornung, V., Ablasser, A., Charrel-Dennis, M., et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458: 514–518. https://doi.org/10.1038/nature07725

[33]

Muruve, D. A., Pétrilli, V., Zaiss, A. K., et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature, 2008, 452: 103–107. https://doi.org/10.1038/nature06664

[34]

Boyden, E. D., Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genetics, 2006, 38: 240–244. https://doi.org/10.1038/ng1724

[35]

Masters, S. L., Gerlic, M., Metcalf, D., et al. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity, 2012, 37: 1009–1023. https://doi.org/10.1016/j.immuni.2012.08.027

[36]

Lamkanfi, M., Dixit, V. M. Mechanisms and functions of inflammasomes. Cell, 2014, 157: 1013–1022. https://doi.org/10.1016/j.cell.2014.04.007

[37]

Minkiewicz, J., de Rivero Vaccari, J. P., Keane, R. W. Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013, 61: 1113–1121. https://doi.org/10.1002/glia.22499

[38]

Hoffman, H. M., Mueller, J. L., Broide, D. H., et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nature Genetics, 2001, 29: 301–305. https://doi.org/10.1038/ng756

[39]

Benetti, E., Chiazza, F., Patel, N. S., et al. The NLRP3 Inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediators Inflammation, 2013, 2013: 678627. https://doi.org/10.1155/2013/678627

[40]

Mariathasan, S., Weiss, D. S., Newton, K., et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440: 228–232. https://doi.org/10.1038/nature04515

[41]

Pétrilli, V., Papin, S., Dostert, C., et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death & Differentiation, 2007, 14: 1583–1589. https://doi.org/10.1038/sj.cdd.4402195

[42]

Halle, A., Hornung, V., Petzold, G. C., et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology, 2008, 9: 857–865. https://doi.org/10.1038/ni.1636

[43]

Sharp, F. A., Ruane, D., Claass, B., et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 870–875. https://doi.org/ 10.1073/pnas.0804897106

[44]

Duewell, P., Kono, H., Rayner, K. J., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464: 1357–1361. https://doi.org/10.1038/nature08938

[45]

Haneklaus, M., O'Neill, L. A., Coll, R. C. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Current Opinion in Immunology, 2013, 25: 40–45. https://doi.org/10.1016/j.coi.2012.12.004

[46]

Broz, P., Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 2016, 16: 407–420. https://doi.org/10.1038/nri.2016.58

[47]
Kempster, S. L., Belteki, G., Forhead, A. J., et al. Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011 , 300: G253–263. https://doi.org/10.1152/ajpgi.00397.2010
[48]

Wang, P. H., Zhu, S., Yang, L., et al. Nlrp6 regulates intestinal antiviral innate immunity. Science, 2015, 350: 826–830. https://doi.org/10.1126/science.aab3145

[49]
Le Daré, B., Ferron, P. J., Gicquel, T. The purinergic P2X7 REceptor-NLRP3 inflammasome pathway: a new target in alcoholic liver disease? International Journal of Molecular Sciences, 2021 , 22: 2139. https://doi.org/10.3390/ijms22042139
[50]

Tacke, F. Targeting hepatic macrophages to treat liver diseases. Journal of Hepatology, 2017, 66: 1300–1312. https://doi.org/10.1016/j.jhep.2017.02.026

[51]

Gao, B., Ahmad, M. F., Nagy, L. E., et al. Inflammatory pathways in alcoholic steatohepatitis. Journal of Hepatology, 2019, 70: 249–259. https://doi.org/10.1016/j.jhep.2018.10.023

[52]

Wang, H. J., Gao, B., Zakhari, S., et al. Inflammation in alcoholic liver disease. Annual Review of Nutrition, 2012, 32: 343–368. https://doi.org/10.1146/annurev-nutr-072610-145138

[53]
Ciocan, D., Rebours, V., Voican, C. S., et al. Characterization of intestinal microbiota in alcoholic patients with and without alcoholic hepatitis or chronic alcoholic pancreatitis. Scientific Reports, 2018 , 8: 4822. https://doi.org/10.1038/s41598-018-23146-3
[54]

Lang, S., Schnabl, B. Microbiota and fatty liver disease-the known, the unknown, and the future. Cell Host Microbe, 2020, 28: 233–244. https://doi.org/10.1016/j.chom.2020.07.007

[55]
Sangineto, M., Grander, C., Grabherr, F., et al. Recovery of Bacteroides thetaiotaomicron ameliorates hepatic steatosis in experimental alcohol-related liver disease. Gut Microbes, 2022 , 14: 2089006. https://doi.org/10.1080/19490976.2022.2089006
[56]
Meroni, M., Longo, M., Dongiovanni, P. Alcohol or gut microbiota: who is the guilty? International Journal of Molecular Sciences, 2019 , 20: 4568. https://doi.org/10.3390/ijms20184568
[57]

Amabebe, E., Robert, F. O., Agbalalah, T., et al. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 2020, 123: 1127–1137. https://doi.org/10.1017/S0007114520000380

[58]

Liu, Y. L., Yang, J. T., Liu, X. Y., et al. Dietary folic acid addition reduces abdominal fat deposition mediated by alterations in gut microbiota and SCFA production in broilers. Animal Nutrition, 2023, 12: 54–62. https://doi.org/10.1016/j.aninu.2022.08.013

[59]

Yang, H., Xiao, Y. P., Wang, J. J., et al. Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age. Journal of Microbiology, 2018, 56: 346–355. https://doi.org/10.1007/s12275-018-7486-8

[60]

Liu, Y. H., Chen, K. F., Li, F. Y., et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology, 2020, 71: 2050–2066. https://doi.org/10.1002/hep.30975

[61]
Ma, C., Han, M. J., Heinrich, B., et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018 , 360: 6391. https://doi.org/10.1126/science.aan5931
[62]

Golubeva, A. V., Joyce, S. A., Moloney, G., et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine, 2017, 24: 166–178. https://doi.org/10.1016/j.ebiom.2017.09.020

[63]
Chen, M. L., Yi, L., Zhang, Y., et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio, 2016 , 7: e02210-15. https://doi.org/10.1128/mBio.02210-15
[64]
Ma, J., Sun, L. Q., Liu, Y., et al. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiology, 2020 , 20: 82. https://doi.org/10.1186/s12866-020-01739-1
[65]
Wang, Q. Q., Guo, M., Liu, Y., et al. Bifidobacterium breve and Bifidobacterium longum attenuate choline-induced plasma trimethylamine n-oxide production by modulating gut microbiota in mice. Nutrients, 2022 , 14: 1222. https://doi.org/10.3390/nu14061222
[66]
Shi, F. C., Zhou, F., Zheng, X. H., et al. Effects of dietary fiber compounds on characteristic human flora and metabolites mediated by the longevity dietary pattern analyzed by in vitro fermentation. Nutrients, 2022 , 14: 5037. https://doi.org/10.3390/nu14235037
[67]

Dang, L. H., Bettegowda, C., Agrawal, N., et al. Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biology & Therapy, 2004, 3: 326–337. https://doi.org/10.4161/cbt.3.3.704

[68]

Zhao, X. H., Jia, Y. X., Li, J. J., et al. Indole derivative-capped gold nanoparticles as an effective bactericide in vivo. ACS Applied Materials & Interfaces, 2018, 10: 29398–29406. https://doi.org/10.1021/acsami.8b11980

[69]

Gatsios, A., Kim, C. S., York, A. G., et al. Cellular stress-induced metabolites in Escherichia coli. Journal of Natural Products, 2022, 85: 2626–2640. https://doi.org/10.1021/acs.jnatprod.2c00706

[70]

Garaiova, I., Paduchová, Z., Nagyová, Z., et al. Probiotics with vitamin C for the prevention of upper respiratory tract symptoms in children aged 3-10 years: randomised controlled trial. Beneficial Microbes, 2021, 12: 431–440. https://doi.org/10.3920/BM2020.0185

[71]

Ranji, P., Agah, S., Heydari, Z., et al. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the serum biochemical parameters, and the vitamin D and leptin receptor genes on mice colon cancer. Iranian Journal of Basic Medical Sciences, 2019, 22: 631–636. https://doi.org/10.22038/ijbms.2019.32624.7806

[72]

Collins, M. D., Fernandez, F., Howarth, O. W. Isolation and characterization of a novel vitamin-K from Eubacterium lentum. Biochemical and Biophysical Research Communications, 1985, 133: 322–328. https://doi.org/10.1016/0006-291x(85)91878-9

[73]

Nuli, R., Cai, J., Kadeer, A., et al. Integrative analysis toward different glucose tolerance-related gut microbiota and diet. Frontiers in Endocrinology (Lausanne), 2019, 10: 295. https://doi.org/10.3389/fendo.2019.00295.,

[74]
Taranto, M. P., Vera, J. L., Hugenholtz, J., et al. Lactobacillus reuteri CRL1098 produces cobalamin. Journal of Bacteriology, 2003 , 185: 5643–5647. https://doi.org/10.1128/JB.185.18.5643-5647.2003
[75]

Kang, D. Z., Shi, B. C., Erfe, M. C., et al. Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Science Translational Medicine, 2015, 7: 293ra103. https://doi.org/10.1126/scitranslmed.aab2009

[76]

Liu, J., Liu, Y. F., Wu, J., et al. Metabolic profiling analysis of the vitamin B12 producer Propionibacterium freudenreichii. Microbiologyopen, 2021, 10: e1199. https://doi.org/10.1002/mbo3.1199

[77]

Shek, R., Dattmore, D. A., Stives, D. P., et al. Structural and functional basis for targeting Campylobacter jejuni agmatine deiminase to overcome antibiotic resistance. Biochemistry, 2017, 56: 6734–6742. https://doi.org/10.1021/acs.biochem.7b00982

[78]

Sleytr, U. B., Thorne, K. J. Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum. Journal of Bacteriology, 1976, 126: 377–383. https://doi.org/10.1128/jb.126.1.377-383.1976

[79]

Dev, K., Begum, J., Biswas, A., et al. Hepatic transcriptome analysis reveals altered lipid metabolism and consequent health indices in chicken supplemented with dietary Bifidobacterium bifidum and mannan-oligosaccharides. Scientific Reports, 2021, 11: 17895. https://doi.org/10.1038/s41598-021-97467-1

[80]

Pan, X. F., Kaminga, A. C., Liu, A. Z., et al. Gut microbiota, glucose, lipid, and water-electrolyte metabolism in children with nonalcoholic fatty liver disease. Frontiers in Cellular Infection Microbiology, 2021, 11: 683743. https://doi.org/10.3389/fcimb.2021.683743

[81]

Brown, E. M., Ke, X., Hitchcock, D., et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host & Microbe, 2019, 25: 668–680. https://doi.org/ 10.1016/j.chom.2019.04.002

[82]

Li, T. H., Zhang, T. T., Gao, H. M., et al. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction. Redox Biology, 2021, 41: 101886. https://doi.org/10.1016/j.redox.2021.101886

[83]
Shahin, Y. H., Elwakil, B. H., Ghareeb, D. A., et al. Micrococcus lylae MW407006 pigment: production, optimization, nano-pigment synthesis, and biological activities. Biology (Basel ), 2022 , 11: 1171. https://doi.org/10.3390/biology11081171
[84]

Hou, Y. L., Wei, W., Guan, X. J., et al. A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut. Nature Communications, 2021, 12: 271. https://doi.org/10.1038/s41467-020-20673-4

[85]

Schoeler, M., Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine & Metabolic Disorders, 2019, 20: 461–472. https://doi.org/10.1007/s11154-019-09512-0

[86]

Lieber, C. S. Hepatic and metabolic effects of ethanol: pathogenesis and prevention. Annals of Medicine, 1994, 26: 325–330. https://doi.org/10.3109/07853899409148346

[87]

Hyun, J. G., Han, J. S., Lee, C. B., et al. Pathophysiological aspects of alcohol metabolism in the liver. Internatioanl Journal of Molecular Sciences, 2021, 22: 5717. https://doi.org/10.3390/ijms22115717

[88]

Setshedi, M., Wands, J. R., Monte, S. M. Acetaldehyde adducts in alcoholic liver disease. Oxidative Medicine and Cellular Longevity, 2010, 3: 178–185. https://doi.org/10.4161/oxim.3.3.12288

[89]

Israel, Y., Hurwitz, E., Niemelä, O., et al. Monoclonal and polyclonal antibodies against acetaldehyde-containing epitopes in acetaldehyde-protein adducts. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83: 7923–7927. https://doi.org/10.1073/pnas.83.20.7923

[90]

Wu, D. F., Cederbaum, A. I. Alcohol, oxidative stress, and free radical damage. Alcohol Research & Health, 2003, 27: 277–284.

[91]

Eom, J. A., Jeong, J. J., Han, S. H., et al. Gut-microbiota prompt activation of natural killer cell on alcoholic liver disease. Gut Microbes, 2023, 15: 2281014. https://doi.org/10.1080/19490976.2023.2281014

[92]
Martino, C., Zaramela, L. S., Gao, B., et al. Acetate reprograms gut microbiota during alcohol consumption. Nature Communications, 2022 , 13: 4630. https://doi.org/10.1038/s41467-022-31973-2
[93]

Dukić, M., Radonjić, T., Jovanović, I., et al. Alcohol, inflammation, and microbiota in alcoholic liver disease. International Journal of Molecular Sciences, 2023, 24: 3735. https://doi.org/10.3390/ijms24043735

[94]
Duan, Y., Llorente, C., Lang, S., et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature, 2019 , 575: 505-511. https://doi.org/10.1038/s41586-019-1742-x
[95]
Leclercq, S., Matamoros, S., Cani, P. D., et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences of the United States of America, 2014 , 111: E4485-93. https://doi.org/10.1073/pnas.1415174111
[96]

Wang, L. R., Fouts, D. E., Stärkel, P., et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe, 2016, 19: 227–239. https://doi.org/10.1016/j.chom.2016.01.003

[97]

Bode, C., Kolepke, R., Schäfer, K., et al. Breath hydrogen excretion in patients with alcoholic liver disease-evidence of small intestinal bacterial overgrowth. Zeitschrift fur Gastroenterologie, 1993, 31: 3–7.

[98]

Yan, A. W., Fouts, D. E., Brandl, J., et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology, 2011, 53: 96–105. https://doi.org/10.1002/hep.24018

[99]

Wahlström, A., Sayin, S. I., Marschall, H. U., et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism, 2016, 24: 41–50. https://doi.org/10.1016/j.cmet.2016.05.005

[100]

Molinero, N., Ruiz, L., Sánchez, B., et al. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Frontiers in Physiology, 2019, 10: 185. https://doi.org/10.3389/fphys.2019.00185

[101]

Inagaki, T., Moschetta, A., Lee, Y. K., et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 3920–3925. https://doi.org/10.1073/pnas.0509592103

Food & Medicine Homology
Article number: 9420020
Cite this article:
Gao Y. Inflammation and gut microbiota in the alcoholic liver disease. Food & Medicine Homology, 2024, 1(2): 9420020. https://doi.org/10.26599/FMH.2024.9420020

410

Views

104

Downloads

0

Crossref

Altmetrics

Received: 08 June 2024
Revised: 07 July 2024
Accepted: 07 July 2024
Published: 15 August 2024
© National R & D Center for Edible Fungus Processing Technology 2024. Published by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return