Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
Show Author Information
Hide Author Information
Highlights
(1) Inflammation is essential to pathogenesis of hepatic diseases, especially inflammasome.
(2) We mainly pay close attention to the activation and function of inflammasome in ALD.
(3) After alcohol stimulation, the metabolites of gut microbiota will change, and then create a vicious cycle to liver.
Graphical Abstract
Alcohol consumption promotes the second stroke of liver cells via action of oxidative stress-related lipid peroxidation and inflammatory cytokines, resulting into inflammatory response. Therefore, inflammasomes are multi-protein complexes which realize the risk and gather to regulate caspase-1 activation. The inflammasome activation particularly needs two signals in other to enlarge inflammation. Additionally, gut microbes are involved in the regulation of inflammation by constructing a gut specific immune system rather than reusing the infectious pathogens. After alcohol stimulation, the metabolites of gut microbiota will change, and then create a vicious cycle to liver.
Abstract
Alcoholic liver disease (ALD) covers including but not limited to oxidative stress. Alcohol, as the primary stroke, promote the second stroke of liver cells via action of oxidative stress-related lipid peroxidation and inflammatory cytokines, resulting into inflammatory response. Inflammation is essential to pathogenesis of hepatic diseases. Therefore, inflammasomes are multi-protein complexes which realize the risk and gather to regulate caspase-1 activation, activating cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Unlike inflammatory responses, the inflammasome activation particularly needs two signals in other to enlarge inflammation. It has been discovered in several human hepatic diseases and realized to be a major contributor to organic damage. Especially, we mainly pay close attention to the activation and function of inflammasome in ALD. Additionally, gut microbes are involved in the regulation of inflammation by constructing a gut specific immune system rather than reusing the infectious pathogens. Fungal flora has an auxiliary effect on inflammatory response, metabolic disorders, and bacterial microbial regulation and host defense, while alcohol abuse causes an imbalance in the microflora of human gut as the feed-back. After alcohol stimulation, the metabolites of gut microbiota will change, and then create a vicious cycle to liver. In brief, the application and translation of the current review promises new approaches in the treatment of ALD, especially from inflammasomes and gut microbiota.
No abstract is available for this article. Click the button above to view the PDF directly.
References
[1]
Wang, W. J., Xiao, P., Xu, H. Q., et al. Growing burden of alcoholic liver disease in China: a review. World Journal of Gastroenterology, 2019, 25: 1445–1456. https://doi.org/10.3748/wjg.v25.i12.1445
Ghosh Dastidar, S., Warner, J. B., Warner, D. R., et al. Rodent models of alcoholic liver disease: role of binge ethanol administration. Biomolecules, 2018, 8: 3. https://doi.org/10.3390/biom8010003
Grant, B. F., Goldstein, R. B., Saha, T. D., et al. Epidemiology of DSM-5 alcohol use disorder: results from the national epidemiologic survey on alcohol and related conditions III. JAMA Psychiatry, 2015, 72: 757–766. https://doi.org/10.1001/jamapsychiatry.2015.0584
Henry, J. A., Moloney, C., Rivas, C., et al. Increase in alcohol related deaths: is hepatitis C a factor? Journal of Clinical Pathology, 2002 , 55: 704–707. https://doi.org/10.1136/jcp.55.9.704
Yan, C. Y., Hu, W. T., Tu, J. Q., et al. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. Journal of Translation Medicine, 2023, 21: 300. https://doi.org/10.1186/s12967-023-04166-8
Lozano-Ruiz, B., González-Navajas, J. M. The emerging relevance of AIM2 in liver disease. International Journal of Molecular Sciences, 2020, 21: 6535. https://doi.org/10.3390/ijms21186535
Bawa, M., Saraswat, V. A. Gut-liver axis: role of inflammasomes. Journal of Clinical and Experimental Hepatology, 2013, 3: 141–149. https://doi.org/10.1016/j.jceh.2013.03.225
Lieber, C. S. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol, 2004, 34: 9–19. https://doi.org/10.1016/j.alcohol.2004.07.008
Shi, C. J., Yang, H. Q., Zhang, Z. H. Involvement of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome in the pathogenesis of liver diseases. Frontiers in Cell and Developmental Biology, 2020, 8: 139. https://doi.org/10.3389/fcell.2020.00139
Xu, T., Du, Y., Fang, X. B., et al. New insights into Nod-like receptors (NLRs) in liver diseases. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10: 1–16.
Jackson, D. N., Theiss, A. L. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes, 2020, 11: 285–304. https://doi.org/10.1080/19490976.2019.1592421
Ong, H. S., Yim, H. C. H. Microbial factors in inflammatory diseases and cancers. Advances in Experimental Medicine and Biology, 2017, 1024: 153–174. https://doi.org/10.1007/978-981-10-5987-2_7
Macia, L., Tan, J., Vieira, A. T., et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 2015 , 6: 6734. https://doi.org/10.1038/ncomms7734
Kummer, J. A., Broekhuizen, R., Everett, H., et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. Journal of Histochemistry and Cytochemistry, 2007, 55: 443–452. https://doi.org/10.1369/jhc.6A7101.2006
Csak, T., Ganz, M., Pespisa, J., et al. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology, 2011, 54: 133–144. https://doi.org/10.1002/hep.24341
Watanabe, A., Sohail, M. A., Gomes, D. A., et al. Inflammasome-mediated regulation of hepatic stellate cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2009, 296: G1248–1257. https://doi.org/10.1152/ajpgi.90223.2008
Rawat, R., Cohen, T. V., Ampong, B., et al. Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. American Journal of Pathology, 2010, 176: 2891–900. https://doi.org/10.2353/ajpath.2010.090058
McClain, C. J., Cohen, D. A., Dinarello, C. A., et al. Serum interleukin-1 (IL-1) activity in alcoholic hepatitis. Life Sciences, 1986, 39: 1479–1485. https://doi.org/10.1016/0024-3205(86) 90554-0
Petrasek, J., Iracheta-Vellve, A., Saha, B., et al. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. Journal of Leukocyte Biology, 2015, 98: 249–256. https://doi.org/10.1189/jlb.3AB1214-590R
Hoyt, L. R., Randall, M. J., Ather, J. L., et al. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biology, 2017, 12: 883–896. https://doi.org/10.1016/j.redox.2017.04.020
Fernandes-Alnemri, T., Yu, J. W., Datta, P., et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature, 2009, 458: 509–513. https://doi.org/10.1038/nature07710
Hornung, V., Ablasser, A., Charrel-Dennis, M., et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458: 514–518. https://doi.org/10.1038/nature07725
Muruve, D. A., Pétrilli, V., Zaiss, A. K., et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature, 2008, 452: 103–107. https://doi.org/10.1038/nature06664
Boyden, E. D., Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genetics, 2006, 38: 240–244. https://doi.org/10.1038/ng1724
Masters, S. L., Gerlic, M., Metcalf, D., et al. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity, 2012, 37: 1009–1023. https://doi.org/10.1016/j.immuni.2012.08.027
Minkiewicz, J., de Rivero Vaccari, J. P., Keane, R. W. Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013, 61: 1113–1121. https://doi.org/10.1002/glia.22499
Hoffman, H. M., Mueller, J. L., Broide, D. H., et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nature Genetics, 2001, 29: 301–305. https://doi.org/10.1038/ng756
Benetti, E., Chiazza, F., Patel, N. S., et al. The NLRP3 Inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediators Inflammation, 2013, 2013: 678627. https://doi.org/10.1155/2013/678627
Mariathasan, S., Weiss, D. S., Newton, K., et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440: 228–232. https://doi.org/10.1038/nature04515
Pétrilli, V., Papin, S., Dostert, C., et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death & Differentiation, 2007, 14: 1583–1589. https://doi.org/10.1038/sj.cdd.4402195
Halle, A., Hornung, V., Petzold, G. C., et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology, 2008, 9: 857–865. https://doi.org/10.1038/ni.1636
Sharp, F. A., Ruane, D., Claass, B., et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 870–875. https://doi.org/ 10.1073/pnas.0804897106
Duewell, P., Kono, H., Rayner, K. J., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464: 1357–1361. https://doi.org/10.1038/nature08938
Haneklaus, M., O'Neill, L. A., Coll, R. C. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Current Opinion in Immunology, 2013, 25: 40–45. https://doi.org/10.1016/j.coi.2012.12.004
Broz, P., Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 2016, 16: 407–420. https://doi.org/10.1038/nri.2016.58
Kempster, S. L., Belteki, G., Forhead, A. J., et al. Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011 , 300: G253–263. https://doi.org/10.1152/ajpgi.00397.2010
[48]
Wang, P. H., Zhu, S., Yang, L., et al. Nlrp6 regulates intestinal antiviral innate immunity. Science, 2015, 350: 826–830. https://doi.org/10.1126/science.aab3145
Le Daré, B., Ferron, P. J., Gicquel, T. The purinergic P2X7 REceptor-NLRP3 inflammasome pathway: a new target in alcoholic liver disease? International Journal of Molecular Sciences, 2021 , 22: 2139. https://doi.org/10.3390/ijms22042139
Gao, B., Ahmad, M. F., Nagy, L. E., et al. Inflammatory pathways in alcoholic steatohepatitis. Journal of Hepatology, 2019, 70: 249–259. https://doi.org/10.1016/j.jhep.2018.10.023
Ciocan, D., Rebours, V., Voican, C. S., et al. Characterization of intestinal microbiota in alcoholic patients with and without alcoholic hepatitis or chronic alcoholic pancreatitis. Scientific Reports, 2018 , 8: 4822. https://doi.org/10.1038/s41598-018-23146-3
[54]
Lang, S., Schnabl, B. Microbiota and fatty liver disease-the known, the unknown, and the future. Cell Host Microbe, 2020, 28: 233–244. https://doi.org/10.1016/j.chom.2020.07.007
Sangineto, M., Grander, C., Grabherr, F., et al. Recovery of Bacteroides thetaiotaomicron ameliorates hepatic steatosis in experimental alcohol-related liver disease. Gut Microbes, 2022 , 14: 2089006. https://doi.org/10.1080/19490976.2022.2089006
[56]
Meroni, M., Longo, M., Dongiovanni, P. Alcohol or gut microbiota: who is the guilty? International Journal of Molecular Sciences, 2019 , 20: 4568. https://doi.org/10.3390/ijms20184568
[57]
Amabebe, E., Robert, F. O., Agbalalah, T., et al. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 2020, 123: 1127–1137. https://doi.org/10.1017/S0007114520000380
Liu, Y. L., Yang, J. T., Liu, X. Y., et al. Dietary folic acid addition reduces abdominal fat deposition mediated by alterations in gut microbiota and SCFA production in broilers. Animal Nutrition, 2023, 12: 54–62. https://doi.org/10.1016/j.aninu.2022.08.013
Yang, H., Xiao, Y. P., Wang, J. J., et al. Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age. Journal of Microbiology, 2018, 56: 346–355. https://doi.org/10.1007/s12275-018-7486-8
Liu, Y. H., Chen, K. F., Li, F. Y., et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology, 2020, 71: 2050–2066. https://doi.org/10.1002/hep.30975
Ma, C., Han, M. J., Heinrich, B., et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018 , 360: 6391. https://doi.org/10.1126/science.aan5931
[62]
Golubeva, A. V., Joyce, S. A., Moloney, G., et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine, 2017, 24: 166–178. https://doi.org/10.1016/j.ebiom.2017.09.020
Chen, M. L., Yi, L., Zhang, Y., et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio, 2016 , 7: e02210-15. https://doi.org/10.1128/mBio.02210-15
[64]
Ma, J., Sun, L. Q., Liu, Y., et al. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiology, 2020 , 20: 82. https://doi.org/10.1186/s12866-020-01739-1
[65]
Wang, Q. Q., Guo, M., Liu, Y., et al. Bifidobacterium breve and Bifidobacterium longum attenuate choline-induced plasma trimethylamine n-oxide production by modulating gut microbiota in mice. Nutrients, 2022 , 14: 1222. https://doi.org/10.3390/nu14061222
[66]
Shi, F. C., Zhou, F., Zheng, X. H., et al. Effects of dietary fiber compounds on characteristic human flora and metabolites mediated by the longevity dietary pattern analyzed by in vitro fermentation. Nutrients, 2022 , 14: 5037. https://doi.org/10.3390/nu14235037
[67]
Dang, L. H., Bettegowda, C., Agrawal, N., et al. Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biology & Therapy, 2004, 3: 326–337. https://doi.org/10.4161/cbt.3.3.704
Zhao, X. H., Jia, Y. X., Li, J. J., et al. Indole derivative-capped gold nanoparticles as an effective bactericide in vivo. ACS Applied Materials & Interfaces, 2018, 10: 29398–29406. https://doi.org/10.1021/acsami.8b11980
Gatsios, A., Kim, C. S., York, A. G., et al. Cellular stress-induced metabolites in Escherichia coli. Journal of Natural Products, 2022, 85: 2626–2640. https://doi.org/10.1021/acs.jnatprod.2c00706
Garaiova, I., Paduchová, Z., Nagyová, Z., et al. Probiotics with vitamin C for the prevention of upper respiratory tract symptoms in children aged 3-10 years: randomised controlled trial. Beneficial Microbes, 2021, 12: 431–440. https://doi.org/10.3920/BM2020.0185
Ranji, P., Agah, S., Heydari, Z., et al. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the serum biochemical parameters, and the vitamin D and leptin receptor genes on mice colon cancer. Iranian Journal of Basic Medical Sciences, 2019, 22: 631–636. https://doi.org/10.22038/ijbms.2019.32624.7806
Collins, M. D., Fernandez, F., Howarth, O. W. Isolation and characterization of a novel vitamin-K from Eubacterium lentum. Biochemical and Biophysical Research Communications, 1985, 133: 322–328. https://doi.org/10.1016/0006-291x(85)91878-9
Nuli, R., Cai, J., Kadeer, A., et al. Integrative analysis toward different glucose tolerance-related gut microbiota and diet. Frontiers in Endocrinology (Lausanne), 2019, 10: 295. https://doi.org/10.3389/fendo.2019.00295.,
Taranto, M. P., Vera, J. L., Hugenholtz, J., et al. Lactobacillus reuteri CRL1098 produces cobalamin. Journal of Bacteriology, 2003 , 185: 5643–5647. https://doi.org/10.1128/JB.185.18.5643-5647.2003
[75]
Kang, D. Z., Shi, B. C., Erfe, M. C., et al. Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Science Translational Medicine, 2015, 7: 293ra103. https://doi.org/10.1126/scitranslmed.aab2009
Shek, R., Dattmore, D. A., Stives, D. P., et al. Structural and functional basis for targeting Campylobacter jejuni agmatine deiminase to overcome antibiotic resistance. Biochemistry, 2017, 56: 6734–6742. https://doi.org/10.1021/acs.biochem.7b00982
Sleytr, U. B., Thorne, K. J. Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum. Journal of Bacteriology, 1976, 126: 377–383. https://doi.org/10.1128/jb.126.1.377-383.1976
Dev, K., Begum, J., Biswas, A., et al. Hepatic transcriptome analysis reveals altered lipid metabolism and consequent health indices in chicken supplemented with dietary Bifidobacterium bifidum and mannan-oligosaccharides. Scientific Reports, 2021, 11: 17895. https://doi.org/10.1038/s41598-021-97467-1
Pan, X. F., Kaminga, A. C., Liu, A. Z., et al. Gut microbiota, glucose, lipid, and water-electrolyte metabolism in children with nonalcoholic fatty liver disease. Frontiers in Cellular Infection Microbiology, 2021, 11: 683743. https://doi.org/10.3389/fcimb.2021.683743
Brown, E. M., Ke, X., Hitchcock, D., et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host & Microbe, 2019, 25: 668–680. https://doi.org/ 10.1016/j.chom.2019.04.002
Li, T. H., Zhang, T. T., Gao, H. M., et al. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction. Redox Biology, 2021, 41: 101886. https://doi.org/10.1016/j.redox.2021.101886
Shahin, Y. H., Elwakil, B. H., Ghareeb, D. A., et al. Micrococcus lylae MW407006 pigment: production, optimization, nano-pigment synthesis, and biological activities. Biology (Basel ), 2022 , 11: 1171. https://doi.org/10.3390/biology11081171
[84]
Hou, Y. L., Wei, W., Guan, X. J., et al. A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut. Nature Communications, 2021, 12: 271. https://doi.org/10.1038/s41467-020-20673-4
Schoeler, M., Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine & Metabolic Disorders, 2019, 20: 461–472. https://doi.org/10.1007/s11154-019-09512-0
Lieber, C. S. Hepatic and metabolic effects of ethanol: pathogenesis and prevention. Annals of Medicine, 1994, 26: 325–330. https://doi.org/10.3109/07853899409148346
Hyun, J. G., Han, J. S., Lee, C. B., et al. Pathophysiological aspects of alcohol metabolism in the liver. Internatioanl Journal of Molecular Sciences, 2021, 22: 5717. https://doi.org/10.3390/ijms22115717
Setshedi, M., Wands, J. R., Monte, S. M. Acetaldehyde adducts in alcoholic liver disease. Oxidative Medicine and Cellular Longevity, 2010, 3: 178–185. https://doi.org/10.4161/oxim.3.3.12288
Israel, Y., Hurwitz, E., Niemelä, O., et al. Monoclonal and polyclonal antibodies against acetaldehyde-containing epitopes in acetaldehyde-protein adducts. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83: 7923–7927. https://doi.org/10.1073/pnas.83.20.7923
Eom, J. A., Jeong, J. J., Han, S. H., et al. Gut-microbiota prompt activation of natural killer cell on alcoholic liver disease. Gut Microbes, 2023, 15: 2281014. https://doi.org/10.1080/19490976.2023.2281014
Martino, C., Zaramela, L. S., Gao, B., et al. Acetate reprograms gut microbiota during alcohol consumption. Nature Communications, 2022 , 13: 4630. https://doi.org/10.1038/s41467-022-31973-2
[93]
Dukić, M., Radonjić, T., Jovanović, I., et al. Alcohol, inflammation, and microbiota in alcoholic liver disease. International Journal of Molecular Sciences, 2023, 24: 3735. https://doi.org/10.3390/ijms24043735
Duan, Y., Llorente, C., Lang, S., et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature, 2019 , 575: 505-511. https://doi.org/10.1038/s41586-019-1742-x
[95]
Leclercq, S., Matamoros, S., Cani, P. D., et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences of the United States of America, 2014 , 111: E4485-93. https://doi.org/10.1073/pnas.1415174111
[96]
Wang, L. R., Fouts, D. E., Stärkel, P., et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe, 2016, 19: 227–239. https://doi.org/10.1016/j.chom.2016.01.003
Bode, C., Kolepke, R., Schäfer, K., et al. Breath hydrogen excretion in patients with alcoholic liver disease-evidence of small intestinal bacterial overgrowth. Zeitschrift fur Gastroenterologie, 1993, 31: 3–7.
Yan, A. W., Fouts, D. E., Brandl, J., et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology, 2011, 53: 96–105. https://doi.org/10.1002/hep.24018
Wahlström, A., Sayin, S. I., Marschall, H. U., et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism, 2016, 24: 41–50. https://doi.org/10.1016/j.cmet.2016.05.005
Molinero, N., Ruiz, L., Sánchez, B., et al. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Frontiers in Physiology, 2019, 10: 185. https://doi.org/10.3389/fphys.2019.00185
Inagaki, T., Moschetta, A., Lee, Y. K., et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 3920–3925. https://doi.org/10.1073/pnas.0509592103
Gao Y. Inflammation and gut microbiota in the alcoholic liver disease. Food & Medicine Homology, 2024, 1(2): 9420020. https://doi.org/10.26599/FMH.2024.9420020