AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access | Online First

Critical review on biological effect and mechanisms of diterpenoids in Rosmarinus officinalis

Haiyang Liang1Miao Guan1Tianhao Li1,4Shiming Li2,3Changyang Ma1,2,4( )Changqin Li1,4( )
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
Department of Food Science, Rutgers University, New Brunswick 08901, USA
College of Agriculture, Henan University, Kaifeng 475004, China
Show Author Information

Highlights

(1) This review summarizes the diterpenes found in Rosmarinus officinalis and their corresponding activities, as well as describing the mechanisms underlying these activities.

(2) It is found that 40 out of 62 diterpenoids in Rosmarinus officinalis have anti-oxidant, anti-inflammatory, anti-tumor and neuroprotective effects.

(3) This review consolidates the structure-activity relationships of Rosmarinus officinalis diterpenes and provides insights into the prospective applications of these bioactive diterpenes.

(4) This review offers a comprehensive summary of the activities and mechanisms of action for both carnosic acid and carnosol.

Graphical Abstract

This review sums up the latest papers about the diterpenoid compounds isolated from R. officinalis, and summaries the activities and mechanisms of them. It is found that 40 out of 62 diterpenoids in R. officinalis have anti-oxidant, anti-inflammatory, anti-tumor and neuroprotective effects and so on. Among them, the R. officinalis diterpenes represented by carnosic acid and carnosol are widely used in food, cosmetics and health. In the realm of food and cosmetics, carnosic acid and carnosol can exert anti-oxidant effects to prevent lipid oxidation and combat skin aging. In the realm of health, carnosic acid and carnosol exert their therapeutic effects on conditions like obesity, liver injury, Parkinson's disease, Alzheimer's disease, colon cancer, lung cancer, and inflammation by virtue of their lipid-lowering, anti-tumor, liver protection, neuroprotection, and anti-inflammatory.

Abstract

Rosmarinus officinalis contains diterpene phenols and diterpene quinones, such as carnosic acid and carnosol, exhibiting a wide range of biological activities. This paper reviews the latest papers about the diterpenoid compounds isolated from R. officinalis, and summaries the activities and mechanisms of them. It is found that 40 out of 62 diterpenoids in R. officinalis have anti-oxidant, anti-inflammatory, anti-tumor and neuroprotective effects. For them, the anti-oxidant involves the signaling pathway of Nrf2-HO-1/NQO-1, while the anti-inflammatory involves NF-κB, MAPK and Nrf2, the anti-tumor mechanisms involves Bcl-2, Akt/IKK/NF-κB and ATG, the neuroprotection involves PINK1/parkin and SIRT1/p66shc pathways. This will benefit to the full utilization of R. officinalis in the human health protection.

References

[1]

Miroddi, M., Calapai, G., Isola, S., et al. Rosmarinus officinalis L. as cause of contact dermatitis. Allergologia et Immunopathologia, 2014, 42: 616–619. https://doi.org/10.1016/j.aller.2013.04.006

[2]

Bendif, H., Boudjeniba, M., Miara, M. D., et al. Rosmarinus eriocalyx: An alternative to Rosmarinus officinalis as a source of antioxidant compounds. Food Chemistry, 2017, 218: 78–88. https://doi.org/10.1016/j.foodchem.2016.09.063

[3]

Song, X., Sui, X., Jiang, L. Protection function and mechanism of rosemary ( Rosmarinus officinalis L.) extract on the thermal oxidative stability of vegetable oils. Foods, 2023, 12: 2177. https://doi.org/10.3390/foods12112177

[4]

Sayyad, R., Jafari, S., Ghomi, M. Thermoxidative stability of soybean oil by natural extracted antioxidants from rosemary ( Rosmarinus officinalis L.). International Journal of Food Properties, 2017, 20: 436–446. https://doi.org/10.1080/10942912.2016.1166127

[5]
Moein, S., Pimoradloo, E., Moein, M., et al. Evaluation of antioxidant potentials and α-Amylase inhibition of different fractions of labiatae plants extracts: As a model of antidiabetic compounds properties. BioMed Research International, 2017 , 2017. https://doi.org/10.1155/2017/7319504.
[6]

Tanveer, M., Wagner, C., Haq ul, M. I., et al. Spicing up gastrointestinal health with dietary essential oils. Phytochem. Phytochemistry Reviews, 2020, 19: 243–263. https://doi.org/10.1007/s11101-020-09664-x

[7]

Ahmed, H. M., Babakir-Mina, M. Investigation of rosemary herbal extracts ( Rosmarinus officinalis) and their potential effects on immunity. Phytotherapy Research, 2020, 34: 1829–1837. https://doi.org/10.1002/ptr.6648

[8]

Moore, J., Megaly, M., MacNeil, A. J., et al. Rosemary extract reduces Akt/mTOR/p70S6K activation and inhibits proliferation and survival of A549 human lung cancer cells. Biomedicine & Pharmacotherapy, 2016, 83: 725–732. https://doi.org/10.1016/j.biopha.2016.07.043

[9]

Mohamed, W. A. M., Abd-Elhakim, Y. M., Farouk, S. M. Protective effects of ethanolic extract of rosemary against lead-induced hepato-renal damage in rabbits. Experimental and Toxicologic Pathology, 2016, 68: 451–461. https://doi.org/10.1016/j.etp.2016.07.003

[10]

Amaral, G. P., Carvalho de, N. R., Barcelos, R. P., et al. Protective action of ethanolic extract of Rosmarinus officinalis L. in gastric ulcer prevention induced by ethanol in rats. Food and Chemical Toxicology, 2013, 55: 48–55. https://doi.org/10.1016/j.fct.2012.12.038

[11]

Naimi, M., Vlavcheski, F., Shamshoum, H., et al. Rosemary extract as a potential anti-hyperglycemic agent: Current evidence and future perspectives. Nutrients, 2017, 9: 968. https://doi.org/10.3390/ nu9090968

[12]

Naimi, M., Vlavcheski, F., Murphy, B., et al. Carnosic acid as a component of rosemary extract stimulates skeletal muscle cell glucose uptake via AMPK activation. Clinical and Experimental Pharmacology and Physiology, 2017, 44: 94–102. https://doi.org/10.1111/1440-1681.12674

[13]

Hudaib, M. M., Tawaha, K. A., Hudaib, H. S., et al. Chemical composition of volatile oil from the aerial parts of Rosmarinus officinalis L. Grown in Jordan. Journal of Essential Oil Bearing Plants, 2015, 18: 1282–1286. https://doi.org/10.1080/0972060x.2022.2072177

[14]

Ormeno, E., Fernandez, C., Bousquet-Mélou, A., et al. Monoterpene and sesquiterpene emissions of three Mediterranean species through calcareous and siliceous soils in natural conditions. Atmospheric Environment, 2007, 41: 629–639. https://doi.org/10.1016/j.atmosenv.2006.08.027

[15]

Tounekti, T., Vadel, A. M., Ennajeh, M., et al. Ionic interactions and salinity affect monoterpene and phenolic diterpene composition in rosemary ( Rosmarinus officinalis). Journal of Plant Nutrition and Soil Science, 2011, 174: 504–514. https://doi.org/10.1002/jpln.201000213

[16]

Bensebia, O., Bensebia, B., Allia, K. H., et al. Supercritical CO2 extraction of triterpenes from rosemary leaves: Kinetics and modelling. Separation Science and Technology, 2016, 51: 2174–2182. https://doi.org/10.1080/01496395.2016.1202977

[17]

Simmons, E. M., Sarpong, R. Structure, biosynthetic relationships and chemical synthesis of the icetexane diterpenoids. Natural Product Reports, 2009, 26: 1195–1217. https://doi.org/10.1039/b908984e

[18]

Cao, W., Liu, T., Yang, S., et al. Efficient synthesis of icetexane diterpenes and apoptosis inducing effect by upregulating BiP-ATF4-CHOP axis in Colorectal cells. Journal of Natural Products, 2021, 84: 2012–2019. https://doi.org/10.1021/acs.jnatprod.1c00310

[19]

Thommen, C., Neuburger, M., Gademann, K. Collective syntheses of icetexane natural products based on biogenetic hypotheses. Chemistry - A European Journal, 2017, 23: 120–127. https://doi.org/10.1002/chem.201603932

[20]

Rao, X., Song, Z., Han, Z., et al. Synthesis and insect attractant activity of fluorine-containing Pinus diterpenic amides and imines. Natural Product Research, 2009, 23: 851–860. https://doi.org/10.1080/14786410802155954

[21]

Ma, Y., Cui, G., Chen, T., et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nature Communications, 2021, 12: 685. https://doi.org/10.1038/s41467-021-20959-1

[22]

Huyen, L. T., Oanh, L. T. Diterpenoids from Rosmarinus officinalis L. and their nitric oxide inhibitory activity. Vietnam Journal of Chemistry, 2021, 59: 229–234. https://doi.org/10.1002/vjch.202000161

[23]

Kelecom, K. An abietane diterpene from the labiate Coleus barbatus. Phytochemistry, 1984, 23: 1677–1679. https://doi.org/10.1016/s0031-9422(00)83467-6

[24]

Perez-Fons, L., GarzÓn, M. T., Micol, V. Relationship between the antioxidant capacity and effect of rosemary ( Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. Journal of Agricultural and Food Chemistry, 2010, 58: 161–171. https://doi.org/10.1021/jf9026487

[25]

Johnson, J. J. Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Letters, 2011, 305: 1–7. https://doi.org/ 10.1016/j.canlet.2011.02.005

[26]
Luo, Q., Hu, W., Yu, H., et al. 11,12-Diacetyl-carnosol protects SH-SY5Y cells from hydrogen peroxide damage through the Nrf2/HO-1 pathway. Evidence-based Complementary and Alternative Medicine, 2022 , 2022. https://doi.org/10.1155/2022/4376812
[27]

Sallam, A., Mira, A., Ashour, A., et al. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine, 2016, 23: 1005–1011. https://doi.org/10.1016/j.phymed.2016.06.014

[28]

Etsassala, N. G., Adeloye, A. O., El-Halawany, A., et al. Investigation of in-vitro antioxidant and electrochemical activities of isolated compounds from Salvia chamelaeagnea P. J. bergius extract. Antioxidants, 2019, 8: 98. https://doi.org/10.3390/antiox8040098

[29]

Liang, X., Yu, H., Hu, W., et al. Protective effect of carnosic acid and its semisynthetic derivatives against H2O2-induced neurotoxicity. Phytochemistry Letters, 2018, 27: 82–86. https://doi.org/10.1016/j.phytol.2018.06.014

[30]

Jiang, D., Xu, J., Liu, S., et al. Rosmanol induces breast cancer cells apoptosis by regulating PI3K/AKT and STAT3/JAK2 signaling pathways. Oncology Letters, 2021, 22: 1–13. https://doi.org/10.3892/ol.2021.12892

[31]

Ahmed, A., Mohamed, A. E. H. H., Karchesy, J., et al. Salvidorol, a nor-abietane diterpene with a rare carbon skeleton and two abietane diterpene derivatives from Salvia dorrii. Phytochemistry, 2006, 67: 424–428. https://doi.org/10.1016/j.phytochem.2005.12.009

[32]

Zeng, H. H., Tu, P. F., Zhou, K., et al. Antioxidant properties of phenolic diterpenes from Rosmarinus officinalis. Acta Pharmacologica Sinica, 2001, 22: 1094–1098.

[33]
Habtemariam, S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer's disease. Evidence-based Complementary and Alternative Medicine, 2016 , 2016. https://doi.org/10.1155/2016/2680409
[34]
Zhang, T., Zhao, D. G., Li, S., et al. A new phenolic diterpene from the leaves of Rosmarinus officinalis. Natural Product Communications, 2022 , 17. https://doi.org/10.1177/1934578x2 21075854
[35]

Cui, L., Kim, M. O., Seo, J. H., Kim, IIS., Kim, N. Y., Lee, S. H., et al. Abietane diterpenoids of Rosmarinus officinalis and their diacylglycerol acyltransferase-inhibitory activity. Food Chemistry, 2012, 132: 1775–1780. https://doi.org/10.1016/j.foodchem.2011.11.138

[36]

Chen, X. L., Luo, Q. Y., Hu, W. Y., et al. Abietane diterpenoids with antioxidative damage activity from Rosmarinus officinalis. Journal of Agricultural and Food Chemistry, 2020, 68: 5631–5640. https://doi.org/10.1021/acs.jafc.0c01347

[37]

Haraguchi, H., Saito, T., Okamura, N., et al. Inhibition of lipid peroxidation and superoxide generation by diterpenoids from Rosmarinus officinalis. Planta Medica, 1995, 61: 333–336. https://doi.org/10.1055/s-2006-958094

[38]

Pukalskas, A., Beek van, T. A., Waard de, P. Development of a triple hyphenated HPLC-radical scavenging detection-DAD-SPE-NMR system for the rapid identification of antioxidants in complex plant extracts. Journal of Chromatography A, 2005, 1074: 81–88. https://doi.org/10.1016/j.chroma.2005.03.089

[39]

Shrestha, S., Song, Y. W., Kim, H., et al. Sageone, a diterpene from Rosmarinus officinalis, synergizes with cisplatin cytotoxicity in SNU-1 human gastric cancer cells. Phytomedicine, 2016, 23: 1671–1679. https://doi.org/10.1016/j.phymed.2016.09.008

[40]

Hall, C. A., Cuppett, S. L. Rosmariquinone interactions in autoxidation and light-sensitized oxidation of stripped soybean oil. The Journal of the American Oil Chemists’ Society, 2000, 77: 937–943. https://doi.org/10.1007/s11746-000-0148-8

[41]

Oluwatuyi, M., Kaatz, G.W., Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry, 2004, 65: 3249–3254. https://doi.org/10.1016/j.phytochem.2004.10.009

[42]

Yun, Y. S., Noda, S., Shigemori, G., et al. Phenolic diterpenes from rosemary suppress cAMP responsiveness of gluconeogenic gene promoters. Phytotherapy Research, 2013, 27: 906–910. https://doi.org/10.1002/ptr.4794

[43]

Cantrell, C. L., Richheimer, S. L., Nicholas, G. M., et al. seco-Hinokiol, a new abietane diterpenoid from Rosmarinus officinalis. Journal of Natural Products, 2005, 68: 98–100. https://doi.org/10.1021/np040154i

[44]

Jiang, Z. Y., Li, Z. Q., Huang, C. G., et al. Abietane diterpenoids from Perovskia atriplicifolia and their anti-HBV activities. Bulletin of the Korean Chemical Society, 2015, 36: 623–627. https://doi.org/10.1002/bkcs.10122

[45]

Habtemariam, S. Anti-inflammatory therapeutic mechanisms of natural products: Insight from rosemary diterpenes, carnosic acid and carnosol. Biomedicines, 2023, 11: 545. https://doi.org/10.3390/biomedicines11020545

[46]

Escuder, B., Torres, R., Lissi, E., et al. Antioxidant capacity of abietanes from Sphacele salviae. Natural Product Letters, 2002, 16: 277–281. https://doi.org/10.1080/10575630290020631

[47]

Miura, K., Kikuzaki, H., Nakatani, N. Antioxidant activity of chemical components from sage ( Salvia officinalis L.) and thyme ( Thymus vulgaris L.) measured by the oil stability index method. Journal of Agricultural and Food Chemistry, 2002, 50: 1845–1851. https://doi.org/10.1021/jf011314o

[48]

Fischedick, J. T., Standiford, M., Johnson, D. A., et al. Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway. Bioorganic & Medicinal Chemistry, 2013, 21: 2618–2612. https://doi.org/10.1016/j.bmc.2013.02.019

[49]

Hall, C. A., Cuppett, S. L., Dussault, P. Synthesis and antioxidant activity of rosmariquinone and several analogues. Journal of Agricultural and Food Chemistry, 1998, 46: 1303–1310. https://doi.org/10.2174/1570180815666180219161110

[50]

Gu, L., Weng, X. Antioxidant activity and components of Salvia plebeia R. Br. - a Chinese herb. Food Chemistry, 2001, 73: 299–305. https://doi.org/10.1016/s0308-8146(00)00300-9

[51]

Wang, Z. H., Xie, Y. X., Zhang, J. W., et al. Carnosol protects against spinal cord injury through Nrf-2 upregulation. Journal of Receptors and Signal Transduction, 2016, 36: 72–78. https://doi.org/10.3109/10799893.2015.1049358

[52]

Li, X., Zhang, Q., Hou, N., et al. Carnosol as a Nrf2 activator improves endothelial barrier function through antioxidative mechanisms. International Journal of Molecular Sciences, 2019, 20: 880. https://doi.org/10.3390/ijms20040880

[53]

Wijeratne, S. S. K., Cuppett, S. L. Potential of rosemary ( Rosemarinus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 cells. Journal of Agricultural and Food Chemistry, 2007, 55: 1193–1199. https://doi.org/10.1021/jf063089m

[54]

Brewer, M. S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 2011, 10: 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x

[55]

Zou, Z. Q., Yu, L. L., Pan, Z. H., et al. Study on active fraction screening and chemical constituents of Yao Medicine Callicarpa longissima fruits. Natural Product Research and Development, 2022, 34: 1865–1870. https://doi.org/10.16333/j.1001-6880.2022.11.007

[56]

Lai, C. S., Lee, J. H., Ho, C. T., et al. Rosmanol Potently Inhibits Lipopolysaccharide-Induced iNOS and COX-2 Expression through Downregulating MAPK, NF-κB, STAT3 and C/EBP Signaling Pathways. Journal of Agricultural and Food Chemistry, 2009, 57: 10990–10998. https://doi.org/10.1021/jf9025713

[57]
Chen, J., Sun, N., Li, F., et al. Carnosol Alleviates Collagen-Induced Arthritis by Inhibiting Th17-Mediated Immunity and Favoring Suppressive Activity of Regulatory T Cells. BioMed Research International, 2023 , 2023. https://doi.org/10.1155/2023/1179973
[58]

Yeo, I. J., Park, J. H., Jang, J. S., et al. Inhibitory effect of Carnosol on UVB-induced inflammation via inhibition of STAT3. Archives of Pharmacal Research, 2019, 42: 274–283. https://doi.org/10. 1007/s12272-018-1088-1

[59]

Jung, K. J., Min, K., Bae, J. H., et al. Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post translational levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells. Oncotarget, 2015, 6: 1556–1568. https://doi.org/10.18632/oncotarget.2727

[60]

Kar. S., Palit. S., Ball. W. B., et al. Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis, 2012, 17: 735–747. https://doi.org/10.1007/s10495-012-0715-4

[61]

Bahri, S., Jameleddine, S., Shlyonsky, V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomedicine & Pharmacotherapy, 2016, 84: 569–582. https://doi.org/10.1016/j.biopha.2016.09.067

[62]

Zheng, G., Kadir, A., Zheng, X., et al. Spirodesertols A and B, two highly modified spirocyclic diterpenoids with an unprecedented 6-isopropyl-3 H-spiro[benzofuran-2,1′-cyclohexane] motif from Salvia deserta. Organic Chemistry Frontiers, 2020, 7: 3137–3145. https://doi.org/10.1039/d0qo00735h

[63]

Alsamri, H., Alneyadi, A., Muhammad, K., et al. Carnosol Induces p38-Mediated ER Stress Response and Autophagy in Human Breast Cancer Cells. Frontiers in Oncology, 2022, 12: 911615. https://doi.org/10.3389/fonc.2022.911615

[64]

Alsamri, H., Hasasna, H. E., Baby, B., et al. Carnosol is a novel inhibitor of p300 acetyltransferase in breast cancer. Frontiers in Oncology, 2021, 11: 664403. https://doi.org/10.3389/fonc.2021.664403

[65]

Guerrero, I. C., Andrés, L. S., León, L. G., et al. Abietane diterpenoids from Salvia pachyphylla and S. clevelandii with cytotoxic activity against human cancer cell lines. Journal of Natural Products, 2006, 69: 1803–1805. https://doi.org/10.1021/np060279i

[66]

Li, A., Cao, W. Downregulation of SODD mediates carnosol-induced reduction in cell proliferation in esophageal adenocarcinoma cells. Scientific Reports, 2013, 13: 10580. https://doi.org/10.1038/s41598-023-37796-5

[67]

Petiwala, S. M., Johnson, J. J. Diterpenes from rosemary ( Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Letters, 2015, 367: 93–102. https://doi.org/10.1016/j.canlet.2015.07.005

[68]

Cheng, A. C., Lee, M. F., Tsai, M. L., et al. Rosmanol potently induces apoptosis through both the mitochondrial apoptotic pathway and death receptor pathway in human colon adenocarcinoma COLO 205 cells. Food and Chemical Toxicology, 2011, 49: 485–493. https://doi.org/10.1016/j.fct.2010.11.030

[69]

Kim, D. H., Park, K. W., Chae, I. G., et al. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Molecular Carcinogenesis, 2016, 55: 1096–1110. https://doi.org/10.1002/mc.22353

[70]

Min, K., Jung, K. J., Kwon, T. K. Carnosic acid induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress induction in human renal carcinoma Caki cells. Journal of Cancer Prevention, 2014, 19: 170. https://doi.org/10.15430/jcp.2014.19.3.170

[71]

Tsai, C. W., Lin, C. Y., Lin, H. H., et al. Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochemical Research, 2011, 36: 2442–2451. https://doi.org/10.1007/s11064-011-0573-4

[72]

Mirza, F. J., Zahid, S., Holsinger, R. M. D. Neuroprotective effects of carnosic acid: Insight into its mechanisms of action. Molecules, 2023, 28: 2306. https://doi.org/10.3390/molecules28052306

[73]

Liu, J., Su, H., Qu, Q. M. Carnosic acid prevents beta-amyloid-induced injury in human neuroblastoma SH-SY5Y cells via the induction of autophagy. Neurochemical Research, 2016, 41: 2311–2323. https://doi.org/10.1007/s11064-016-1945-6

[74]

Lin, C. Y., Tsai, C. W. PINK1/parkin-mediated mitophagy pathway is related to neuroprotection by carnosic acid in SH-SY5Y cells. Food and Chemical Toxicology, 2019, 125: 430–437. https://doi.org/10.1016/j.fct.2019.01.027

[75]

Samy, D. M., Mostafa, D. K., Saleh, S. R., et al. Carnosic acid mitigates depression-like behavior in ovariectomized mice via activation of Nrf2/HO-1 pathway. Molecular Neurobiology, 2023, 60: 610–628. https://doi.org/10.1007/s12035-022-03093-x

[76]

Teng, L., Fan, L., Peng, Y., et al. Carnosic acid mitigates early brain injury after subarachnoid hemorrhage: possible involvement of the SIRT1/p66shc signaling pathway. Frontiers in Neuroscience, 2019, 13: 26. https://doi.org/10.3389/fnins.2019.00026

[77]

Wang, Y. B., Li, X., Yang, B., et al. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged Carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer’s disease model. Cell Death & Disease, 2022, 13: 318. https://doi.org/10.1038/s41419-022-04765-1

[78]

Abdelhalim, A., Karim, N., Chebib, M. Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus Officinalis. Journal of Pharmacy & Pharmaceutical Sciences, 2015, 18: 448–459. https://doi.org/10.18433/j3pw38

[79]

Park, S. Y. Neuroprotective and neurotrophic effects of isorosmanol. Zeitschrift für Naturforschung C, 2009, 64: 395–398. https://doi.org/10.1515/znc-2009-5-616

[80]

Mothana, R. A., Al-Said, M. S., Al-Musayeib, N. M., et al. In vitro antiprotozoal activity of abietane diterpenoids isolated from Plectranthus barbatus Andr. International Journal of Molecular Sciences, 2014, 15: 8360–8371. https://doi.org/10.3390/ijms15058360

[81]

Yao, J. H., Zhang, X. S., Zheng, S. S., et al. Prophylaxis with carnosol attenuates liver injury induced by intestinal ischemia/reperfusion. World Journal of Gastroenterology, 2009, 15: 3240–3245. https://doi.org/10.3748/wjg.15.3240

[82]

Shen, F., Ge, C., Yuan, P. Metabolomics study reveals inhibition and metabolic dysregulation in Staphylococcus aureus planktonic cells and biofilms induced by carnosol. Frontiers in Microbiology, 2020, 11: 538572. https://doi.org/10.3389/fmicb.2020.538572

[83]

Li, X., Zhao, L., Han, J. J., et al. Carnosol modulates Th17 cell differentiation and microglial switch in experimental autoimmune encephalomyelitis. Frontiers in Immunology, 2018, 9: 1807. https://doi.org/10.3389/fimmu.2018.01807

[84]
Montesino, N. L., Kaiser, M., Mäser, P., et al. Salvia officinalis L.: Antitrypanosomal activity and active constituents against trypanosoma brucei rhodesiense. Molecules, 2021 , 26: 3226. https://doi.org/10.3390/molecules26113226.
[85]

Tabata, K., Kim, M., Makino, M., et al. Phenolic diterpenes derived from Hyptis incana induce apoptosis and G(2)/M arrest of neuroblastoma cells. Anticancer research, 2012, 32: 4781–4789.

[86]

Yang, Y., Guo, Y., Zhou, Y., et al. Discovery of a novel natural allosteric inhibitor that targets NDM-1 against Escherichia coli. Frontiers in Pharmacology, 2020, 11: 581001. https://doi.org/10.3389/fphar.2020.581001

[87]

Zuo, R. M., Jiao, J. Y., Chen, N., et al. Carnosic acid suppressed the formation of NETs in alcoholic hepatosteatosis based on P2X7R-NLRP3 axis. Phytomedicine, 2023, 110: 154599. https://doi.org/10.1016/j.phymed.2022.154599

[88]

Zhao, Y., Sedighi, R., Wang, P., et al. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. Journal of Agricultural and Food Chemistry, 2015, 63: 4843–4852. https://doi.org/10.1021/acs.jafc.5b01246

[89]

Wang, H., Wang, J., Liu, Y., et al. Interaction mechanism of carnosic acid against glycosidase ( α-amylase and α-glucosidase). International Journal of Biological Macromolecules, 2019, 138: 846–853. https://doi.org/10.1016/j.ijbiomac.2019.07.179

[90]

Park, J. Y., Kim, J. H., Kim, Y. M., et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorganic & Medicinal Chemistry, 2012, 20: 5928–5935. https://doi.org/10.1016/j.bmc.2012.07.038

[91]

Tock, M. L. A., Combrinck, S., Kamatou, G., et al. Antibacterial screening, biochemometric and bioautographic evaluation of the Non-Volatile bioactive components of three indigenous South African Salvia species. Antibiotics, 2022, 11: 901. https://doi.org/10.3390/antibiotics11070901

[92]

Tada, M., Okuno, K., Chiba, K., et al. Antiviral diterpenes from Salvia officinalis. Phytochemistry, 1994, 35: 539–541. https://doi.org/10.1016/s0031-9422(00)94798-8

[93]

Aoyagi, Y., Takahashi, Y., Fukaya, H., et al. Semisynthesis of isetexane diterpenoid analogues and their cytotoxic activity. Chemical & Pharmaceutical Bulletin, 2006, 54: 1602–1604. https://doi.org/10.1248/cpb.54.1602

[94]
Chen, J. J., Wu, H. M., Peng, C. F., et al. seco-Abietane diterpenoids, a phenylethanoid derivative, and antitubercular constituents from Callicarpa pilosissima. Journal of Natural Products, 2009 , 72: 223-228. https://doi.org/10.1021/np800721f.
[95]

Zhou, T., Wang, J., Lin, Z. Q., et al. Abietane diterpenoids with anti-neuroinflammation activity from Rosmarinus officinalis. Fitoterapia, 2024, 174: 105866. https://doi.org/10.1016/j.fitote.2024.105866

[96]

Urones, J. G., Marcos, I. S., Diez, D., et al. Tricyclic diterpenes from hyptys dilatata. Phytochemistry, 1998, 48: 1035–1038. https://doi.org/10.1016/s0031-9422(97)00997-7

[97]

Yuan, R. Y., Zhuoma, D. Z., Wei, Y. L., et al. Two new abietane diterpenes from Rosmarinus officinalis. Chinese Traditional and Herbal Drugs, 2019, 50: 4853–4858.

[98]

He, M. Z., Cao, W., Zeng, G. Y., et al. Phenolic acids of Rosmarinus officinalis. Chinese Traditional and Herbal Drugs, 2021, 52: 3798–3803.

[99]

Mahmoud, A. A., Al-Shihry, S. S., Son, B. W. Diterpenoid quinones from Rosemary ( Rosmarinus officinalis L.). Phytochemistry, 2005, 66: 1685–1690. https://doi.org/10.1016/j.phytochem.2005.04.041

[100]

González, A. G., Andrés, L. S., Luis, J. G., et al. Diterpenes from Salvia mellifera. Phytochemistry, 1991, 30: 4067–4070. https://doi.org/10.1016/0031-9422(91)83468-z

[101]

Tan, N., Topçu, G., Ulubelen, A. Norabietane diterpenoids and other terpenoids from Salvia recognita. Phytochemistry, 1998, 49: 175–178. https://doi.org/10.1016/s0031-9422(97)01056-x

[102]

Zhang, Y., Adelakun, T. A., Qu, L., et al. New terpenoid glycosides obtained from Rosmarinus officinalis L. aerial parts. Fitoterapia, 2014, 99: 78–85. https://doi.org/10.1016/j.fitote.2014.09.004

Food & Medicine Homology
Cite this article:
Liang H, Guan M, Li T, et al. Critical review on biological effect and mechanisms of diterpenoids in Rosmarinus officinalis. Food & Medicine Homology, 2025, https://doi.org/10.26599/FMH.2025.9420021

808

Views

194

Downloads

0

Crossref

Altmetrics

Received: 20 April 2024
Revised: 25 May 2024
Accepted: 25 May 2024
Published: 19 July 2024
© National R & D Center for Edible Fungus Processing Technology 2025. Published by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return