National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
Department of Food Science, Rutgers University, New Brunswick 08901, USA
College of Agriculture, Henan University, Kaifeng 475004, China
Show Author Information
Hide Author Information
Highlights
(1) This review summarizes the diterpenes found in Rosmarinus officinalis and their corresponding activities, as well as describing the mechanisms underlying these activities.
(2) It is found that 40 out of 62 diterpenoids in Rosmarinus officinalis have anti-oxidant, anti-inflammatory, anti-tumor and neuroprotective effects.
(3) This review consolidates the structure-activity relationships of Rosmarinus officinalis diterpenes and provides insights into the prospective applications of these bioactive diterpenes.
(4) This review offers a comprehensive summary of the activities and mechanisms of action for both carnosic acid and carnosol.
Graphical Abstract
This review sums up the latest papers about the diterpenoid compounds isolated from R. officinalis, and summaries the activities and mechanisms of them. It is found that 40 out of 62 diterpenoids in R. officinalis have anti-oxidant, anti-inflammatory, anti-tumor and neuroprotective effects and so on. Among them, the R. officinalis diterpenes represented by carnosic acid and carnosol are widely used in food, cosmetics and health. In the realm of food and cosmetics, carnosic acid and carnosol can exert anti-oxidant effects to prevent lipid oxidation and combat skin aging. In the realm of health, carnosic acid and carnosol exert their therapeutic effects on conditions like obesity, liver injury, Parkinson's disease, Alzheimer's disease, colon cancer, lung cancer, and inflammation by virtue of their lipid-lowering, anti-tumor, liver protection, neuroprotection, and anti-inflammatory.
Abstract
Rosmarinus officinalis contains diterpene phenols and diterpene quinones, such as carnosic acid and carnosol, exhibiting a wide range of biological activities. This paper reviews the latest papers about the diterpenoid compounds isolated from R. officinalis, and summaries the activities and mechanisms of them. It is found that 40 out of 62 diterpenoids in R. officinalis have anti-oxidant, anti-inflammatory, anti-tumor and neuroprotective effects. For them, the anti-oxidant involves the signaling pathway of Nrf2-HO-1/NQO-1, while the anti-inflammatory involves NF-κB, MAPK and Nrf2, the anti-tumor mechanisms involves Bcl-2, Akt/IKK/NF-κB and ATG, the neuroprotection involves PINK1/parkin and SIRT1/p66shc pathways. This will benefit to the full utilization of R. officinalis in the human health protection.
No abstract is available for this article. Click the button above to view the PDF directly.
References
[1]
Miroddi, M., Calapai, G., Isola, S., et al. Rosmarinus officinalis L. as cause of contact dermatitis. Allergologia et Immunopathologia, 2014, 42: 616–619. https://doi.org/10.1016/j.aller.2013.04.006
Bendif, H., Boudjeniba, M., Miara, M. D., et al. Rosmarinus eriocalyx: An alternative to Rosmarinus officinalis as a source of antioxidant compounds. Food Chemistry, 2017, 218: 78–88. https://doi.org/10.1016/j.foodchem.2016.09.063
Song, X., Sui, X., Jiang, L. Protection function and mechanism of rosemary ( Rosmarinus officinalis L.) extract on the thermal oxidative stability of vegetable oils. Foods, 2023, 12: 2177. https://doi.org/10.3390/foods12112177
Sayyad, R., Jafari, S., Ghomi, M. Thermoxidative stability of soybean oil by natural extracted antioxidants from rosemary ( Rosmarinus officinalis L.). International Journal of Food Properties, 2017, 20: 436–446. https://doi.org/10.1080/10942912.2016.1166127
Moein, S., Pimoradloo, E., Moein, M., et al. Evaluation of antioxidant potentials and α-Amylase inhibition of different fractions of labiatae plants extracts: As a model of antidiabetic compounds properties. BioMed Research International, 2017 , 2017. https://doi.org/10.1155/2017/7319504.
Tanveer, M., Wagner, C., Haq ul, M. I., et al. Spicing up gastrointestinal health with dietary essential oils. Phytochem. Phytochemistry Reviews, 2020, 19: 243–263. https://doi.org/10.1007/s11101-020-09664-x
Ahmed, H. M., Babakir-Mina, M. Investigation of rosemary herbal extracts ( Rosmarinus officinalis) and their potential effects on immunity. Phytotherapy Research, 2020, 34: 1829–1837. https://doi.org/10.1002/ptr.6648
Moore, J., Megaly, M., MacNeil, A. J., et al. Rosemary extract reduces Akt/mTOR/p70S6K activation and inhibits proliferation and survival of A549 human lung cancer cells. Biomedicine & Pharmacotherapy, 2016, 83: 725–732. https://doi.org/10.1016/j.biopha.2016.07.043
Mohamed, W. A. M., Abd-Elhakim, Y. M., Farouk, S. M. Protective effects of ethanolic extract of rosemary against lead-induced hepato-renal damage in rabbits. Experimental and Toxicologic Pathology, 2016, 68: 451–461. https://doi.org/10.1016/j.etp.2016.07.003
Amaral, G. P., Carvalho de, N. R., Barcelos, R. P., et al. Protective action of ethanolic extract of Rosmarinus officinalis L. in gastric ulcer prevention induced by ethanol in rats. Food and Chemical Toxicology, 2013, 55: 48–55. https://doi.org/10.1016/j.fct.2012.12.038
Naimi, M., Vlavcheski, F., Shamshoum, H., et al. Rosemary extract as a potential anti-hyperglycemic agent: Current evidence and future perspectives. Nutrients, 2017, 9: 968. https://doi.org/10.3390/ nu9090968
Naimi, M., Vlavcheski, F., Murphy, B., et al. Carnosic acid as a component of rosemary extract stimulates skeletal muscle cell glucose uptake via AMPK activation. Clinical and Experimental Pharmacology and Physiology, 2017, 44: 94–102. https://doi.org/10.1111/1440-1681.12674
Hudaib, M. M., Tawaha, K. A., Hudaib, H. S., et al. Chemical composition of volatile oil from the aerial parts of Rosmarinus officinalis L. Grown in Jordan. Journal of Essential Oil Bearing Plants, 2015, 18: 1282–1286. https://doi.org/10.1080/0972060x.2022.2072177
Ormeno, E., Fernandez, C., Bousquet-Mélou, A., et al. Monoterpene and sesquiterpene emissions of three Mediterranean species through calcareous and siliceous soils in natural conditions. Atmospheric Environment, 2007, 41: 629–639. https://doi.org/10.1016/j.atmosenv.2006.08.027
Tounekti, T., Vadel, A. M., Ennajeh, M., et al. Ionic interactions and salinity affect monoterpene and phenolic diterpene composition in rosemary ( Rosmarinus officinalis). Journal of Plant Nutrition and Soil Science, 2011, 174: 504–514. https://doi.org/10.1002/jpln.201000213
Bensebia, O., Bensebia, B., Allia, K. H., et al. Supercritical CO2 extraction of triterpenes from rosemary leaves: Kinetics and modelling. Separation Science and Technology, 2016, 51: 2174–2182. https://doi.org/10.1080/01496395.2016.1202977
Simmons, E. M., Sarpong, R. Structure, biosynthetic relationships and chemical synthesis of the icetexane diterpenoids. Natural Product Reports, 2009, 26: 1195–1217. https://doi.org/10.1039/b908984e
Cao, W., Liu, T., Yang, S., et al. Efficient synthesis of icetexane diterpenes and apoptosis inducing effect by upregulating BiP-ATF4-CHOP axis in Colorectal cells. Journal of Natural Products, 2021, 84: 2012–2019. https://doi.org/10.1021/acs.jnatprod.1c00310
Thommen, C., Neuburger, M., Gademann, K. Collective syntheses of icetexane natural products based on biogenetic hypotheses. Chemistry - A European Journal, 2017, 23: 120–127. https://doi.org/10.1002/chem.201603932
Ma, Y., Cui, G., Chen, T., et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nature Communications, 2021, 12: 685. https://doi.org/10.1038/s41467-021-20959-1
Huyen, L. T., Oanh, L. T. Diterpenoids from Rosmarinus officinalis L. and their nitric oxide inhibitory activity. Vietnam Journal of Chemistry, 2021, 59: 229–234. https://doi.org/10.1002/vjch.202000161
Perez-Fons, L., GarzÓn, M. T., Micol, V. Relationship between the antioxidant capacity and effect of rosemary ( Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. Journal of Agricultural and Food Chemistry, 2010, 58: 161–171. https://doi.org/10.1021/jf9026487
Luo, Q., Hu, W., Yu, H., et al. 11,12-Diacetyl-carnosol protects SH-SY5Y cells from hydrogen peroxide damage through the Nrf2/HO-1 pathway. Evidence-based Complementary and Alternative Medicine, 2022 , 2022. https://doi.org/10.1155/2022/4376812
Sallam, A., Mira, A., Ashour, A., et al. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine, 2016, 23: 1005–1011. https://doi.org/10.1016/j.phymed.2016.06.014
Etsassala, N. G., Adeloye, A. O., El-Halawany, A., et al. Investigation of in-vitro antioxidant and electrochemical activities of isolated compounds from Salvia chamelaeagnea P. J. bergius extract. Antioxidants, 2019, 8: 98. https://doi.org/10.3390/antiox8040098
Liang, X., Yu, H., Hu, W., et al. Protective effect of carnosic acid and its semisynthetic derivatives against H2O2-induced neurotoxicity. Phytochemistry Letters, 2018, 27: 82–86. https://doi.org/10.1016/j.phytol.2018.06.014
Jiang, D., Xu, J., Liu, S., et al. Rosmanol induces breast cancer cells apoptosis by regulating PI3K/AKT and STAT3/JAK2 signaling pathways. Oncology Letters, 2021, 22: 1–13. https://doi.org/10.3892/ol.2021.12892
Ahmed, A., Mohamed, A. E. H. H., Karchesy, J., et al. Salvidorol, a nor-abietane diterpene with a rare carbon skeleton and two abietane diterpene derivatives from Salvia dorrii. Phytochemistry, 2006, 67: 424–428. https://doi.org/10.1016/j.phytochem.2005.12.009
Zeng, H. H., Tu, P. F., Zhou, K., et al. Antioxidant properties of phenolic diterpenes from Rosmarinus officinalis. Acta Pharmacologica Sinica, 2001, 22: 1094–1098.
Habtemariam, S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer's disease. Evidence-based Complementary and Alternative Medicine, 2016 , 2016. https://doi.org/10.1155/2016/2680409
Zhang, T., Zhao, D. G., Li, S., et al. A new phenolic diterpene from the leaves of Rosmarinus officinalis. Natural Product Communications, 2022 , 17. https://doi.org/10.1177/1934578x2 21075854
Cui, L., Kim, M. O., Seo, J. H., Kim, IIS., Kim, N. Y., Lee, S. H., et al. Abietane diterpenoids of Rosmarinus officinalis and their diacylglycerol acyltransferase-inhibitory activity. Food Chemistry, 2012, 132: 1775–1780. https://doi.org/10.1016/j.foodchem.2011.11.138
Chen, X. L., Luo, Q. Y., Hu, W. Y., et al. Abietane diterpenoids with antioxidative damage activity from Rosmarinus officinalis. Journal of Agricultural and Food Chemistry, 2020, 68: 5631–5640. https://doi.org/10.1021/acs.jafc.0c01347
Pukalskas, A., Beek van, T. A., Waard de, P. Development of a triple hyphenated HPLC-radical scavenging detection-DAD-SPE-NMR system for the rapid identification of antioxidants in complex plant extracts. Journal of Chromatography A, 2005, 1074: 81–88. https://doi.org/10.1016/j.chroma.2005.03.089
Shrestha, S., Song, Y. W., Kim, H., et al. Sageone, a diterpene from Rosmarinus officinalis, synergizes with cisplatin cytotoxicity in SNU-1 human gastric cancer cells. Phytomedicine, 2016, 23: 1671–1679. https://doi.org/10.1016/j.phymed.2016.09.008
Hall, C. A., Cuppett, S. L. Rosmariquinone interactions in autoxidation and light-sensitized oxidation of stripped soybean oil. The Journal of the American Oil Chemists’ Society, 2000, 77: 937–943. https://doi.org/10.1007/s11746-000-0148-8
Oluwatuyi, M., Kaatz, G.W., Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry, 2004, 65: 3249–3254. https://doi.org/10.1016/j.phytochem.2004.10.009
Cantrell, C. L., Richheimer, S. L., Nicholas, G. M., et al. seco-Hinokiol, a new abietane diterpenoid from Rosmarinus officinalis. Journal of Natural Products, 2005, 68: 98–100. https://doi.org/10.1021/np040154i
Jiang, Z. Y., Li, Z. Q., Huang, C. G., et al. Abietane diterpenoids from Perovskia atriplicifolia and their anti-HBV activities. Bulletin of the Korean Chemical Society, 2015, 36: 623–627. https://doi.org/10.1002/bkcs.10122
Escuder, B., Torres, R., Lissi, E., et al. Antioxidant capacity of abietanes from Sphacele salviae. Natural Product Letters, 2002, 16: 277–281. https://doi.org/10.1080/10575630290020631
Miura, K., Kikuzaki, H., Nakatani, N. Antioxidant activity of chemical components from sage ( Salvia officinalis L.) and thyme ( Thymus vulgaris L.) measured by the oil stability index method. Journal of Agricultural and Food Chemistry, 2002, 50: 1845–1851. https://doi.org/10.1021/jf011314o
Fischedick, J. T., Standiford, M., Johnson, D. A., et al. Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway. Bioorganic & Medicinal Chemistry, 2013, 21: 2618–2612. https://doi.org/10.1016/j.bmc.2013.02.019
Hall, C. A., Cuppett, S. L., Dussault, P. Synthesis and antioxidant activity of rosmariquinone and several analogues. Journal of Agricultural and Food Chemistry, 1998, 46: 1303–1310. https://doi.org/10.2174/1570180815666180219161110
Wang, Z. H., Xie, Y. X., Zhang, J. W., et al. Carnosol protects against spinal cord injury through Nrf-2 upregulation. Journal of Receptors and Signal Transduction, 2016, 36: 72–78. https://doi.org/10.3109/10799893.2015.1049358
Li, X., Zhang, Q., Hou, N., et al. Carnosol as a Nrf2 activator improves endothelial barrier function through antioxidative mechanisms. International Journal of Molecular Sciences, 2019, 20: 880. https://doi.org/10.3390/ijms20040880
Wijeratne, S. S. K., Cuppett, S. L. Potential of rosemary ( Rosemarinus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 cells. Journal of Agricultural and Food Chemistry, 2007, 55: 1193–1199. https://doi.org/10.1021/jf063089m
Brewer, M. S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 2011, 10: 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
Zou, Z. Q., Yu, L. L., Pan, Z. H., et al. Study on active fraction screening and chemical constituents of Yao Medicine Callicarpa longissima fruits. Natural Product Research and Development, 2022, 34: 1865–1870. https://doi.org/10.16333/j.1001-6880.2022.11.007
Lai, C. S., Lee, J. H., Ho, C. T., et al. Rosmanol Potently Inhibits Lipopolysaccharide-Induced iNOS and COX-2 Expression through Downregulating MAPK, NF-κB, STAT3 and C/EBP Signaling Pathways. Journal of Agricultural and Food Chemistry, 2009, 57: 10990–10998. https://doi.org/10.1021/jf9025713
Yeo, I. J., Park, J. H., Jang, J. S., et al. Inhibitory effect of Carnosol on UVB-induced inflammation via inhibition of STAT3. Archives of Pharmacal Research, 2019, 42: 274–283. https://doi.org/10. 1007/s12272-018-1088-1
Jung, K. J., Min, K., Bae, J. H., et al. Carnosic acid sensitized TRAIL-mediated apoptosis through down-regulation of c-FLIP and Bcl-2 expression at the post translational levels and CHOP-dependent up-regulation of DR5, Bim, and PUMA expression in human carcinoma caki cells. Oncotarget, 2015, 6: 1556–1568. https://doi.org/10.18632/oncotarget.2727
Kar. S., Palit. S., Ball. W. B., et al. Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis, 2012, 17: 735–747. https://doi.org/10.1007/s10495-012-0715-4
Bahri, S., Jameleddine, S., Shlyonsky, V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomedicine & Pharmacotherapy, 2016, 84: 569–582. https://doi.org/10.1016/j.biopha.2016.09.067
Zheng, G., Kadir, A., Zheng, X., et al. Spirodesertols A and B, two highly modified spirocyclic diterpenoids with an unprecedented 6-isopropyl-3 H-spiro[benzofuran-2,1′-cyclohexane] motif from Salvia deserta. Organic Chemistry Frontiers, 2020, 7: 3137–3145. https://doi.org/10.1039/d0qo00735h
Alsamri, H., Alneyadi, A., Muhammad, K., et al. Carnosol Induces p38-Mediated ER Stress Response and Autophagy in Human Breast Cancer Cells. Frontiers in Oncology, 2022, 12: 911615. https://doi.org/10.3389/fonc.2022.911615
Alsamri, H., Hasasna, H. E., Baby, B., et al. Carnosol is a novel inhibitor of p300 acetyltransferase in breast cancer. Frontiers in Oncology, 2021, 11: 664403. https://doi.org/10.3389/fonc.2021.664403
Guerrero, I. C., Andrés, L. S., León, L. G., et al. Abietane diterpenoids from Salvia pachyphylla and S. clevelandii with cytotoxic activity against human cancer cell lines. Journal of Natural Products, 2006, 69: 1803–1805. https://doi.org/10.1021/np060279i
Li, A., Cao, W. Downregulation of SODD mediates carnosol-induced reduction in cell proliferation in esophageal adenocarcinoma cells. Scientific Reports, 2013, 13: 10580. https://doi.org/10.1038/s41598-023-37796-5
Petiwala, S. M., Johnson, J. J. Diterpenes from rosemary ( Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Letters, 2015, 367: 93–102. https://doi.org/10.1016/j.canlet.2015.07.005
Cheng, A. C., Lee, M. F., Tsai, M. L., et al. Rosmanol potently induces apoptosis through both the mitochondrial apoptotic pathway and death receptor pathway in human colon adenocarcinoma COLO 205 cells. Food and Chemical Toxicology, 2011, 49: 485–493. https://doi.org/10.1016/j.fct.2010.11.030
Kim, D. H., Park, K. W., Chae, I. G., et al. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Molecular Carcinogenesis, 2016, 55: 1096–1110. https://doi.org/10.1002/mc.22353
Min, K., Jung, K. J., Kwon, T. K. Carnosic acid induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress induction in human renal carcinoma Caki cells. Journal of Cancer Prevention, 2014, 19: 170. https://doi.org/10.15430/jcp.2014.19.3.170
Tsai, C. W., Lin, C. Y., Lin, H. H., et al. Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochemical Research, 2011, 36: 2442–2451. https://doi.org/10.1007/s11064-011-0573-4
Mirza, F. J., Zahid, S., Holsinger, R. M. D. Neuroprotective effects of carnosic acid: Insight into its mechanisms of action. Molecules, 2023, 28: 2306. https://doi.org/10.3390/molecules28052306
Liu, J., Su, H., Qu, Q. M. Carnosic acid prevents beta-amyloid-induced injury in human neuroblastoma SH-SY5Y cells via the induction of autophagy. Neurochemical Research, 2016, 41: 2311–2323. https://doi.org/10.1007/s11064-016-1945-6
Lin, C. Y., Tsai, C. W. PINK1/parkin-mediated mitophagy pathway is related to neuroprotection by carnosic acid in SH-SY5Y cells. Food and Chemical Toxicology, 2019, 125: 430–437. https://doi.org/10.1016/j.fct.2019.01.027
Samy, D. M., Mostafa, D. K., Saleh, S. R., et al. Carnosic acid mitigates depression-like behavior in ovariectomized mice via activation of Nrf2/HO-1 pathway. Molecular Neurobiology, 2023, 60: 610–628. https://doi.org/10.1007/s12035-022-03093-x
Teng, L., Fan, L., Peng, Y., et al. Carnosic acid mitigates early brain injury after subarachnoid hemorrhage: possible involvement of the SIRT1/p66shc signaling pathway. Frontiers in Neuroscience, 2019, 13: 26. https://doi.org/10.3389/fnins.2019.00026
Wang, Y. B., Li, X., Yang, B., et al. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged Carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer’s disease model. Cell Death & Disease, 2022, 13: 318. https://doi.org/10.1038/s41419-022-04765-1
Abdelhalim, A., Karim, N., Chebib, M. Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus Officinalis. Journal of Pharmacy & Pharmaceutical Sciences, 2015, 18: 448–459. https://doi.org/10.18433/j3pw38
Park, S. Y. Neuroprotective and neurotrophic effects of isorosmanol. Zeitschrift für Naturforschung C, 2009, 64: 395–398. https://doi.org/10.1515/znc-2009-5-616
Mothana, R. A., Al-Said, M. S., Al-Musayeib, N. M., et al. In vitro antiprotozoal activity of abietane diterpenoids isolated from Plectranthus barbatus Andr. International Journal of Molecular Sciences, 2014, 15: 8360–8371. https://doi.org/10.3390/ijms15058360
Yao, J. H., Zhang, X. S., Zheng, S. S., et al. Prophylaxis with carnosol attenuates liver injury induced by intestinal ischemia/reperfusion. World Journal of Gastroenterology, 2009, 15: 3240–3245. https://doi.org/10.3748/wjg.15.3240
Shen, F., Ge, C., Yuan, P. Metabolomics study reveals inhibition and metabolic dysregulation in Staphylococcus aureus planktonic cells and biofilms induced by carnosol. Frontiers in Microbiology, 2020, 11: 538572. https://doi.org/10.3389/fmicb.2020.538572
Montesino, N. L., Kaiser, M., Mäser, P., et al. Salvia officinalis L.: Antitrypanosomal activity and active constituents against trypanosoma brucei rhodesiense. Molecules, 2021 , 26: 3226. https://doi.org/10.3390/molecules26113226.
Tabata, K., Kim, M., Makino, M., et al. Phenolic diterpenes derived from Hyptis incana induce apoptosis and G(2)/M arrest of neuroblastoma cells. Anticancer research, 2012, 32: 4781–4789.
Yang, Y., Guo, Y., Zhou, Y., et al. Discovery of a novel natural allosteric inhibitor that targets NDM-1 against Escherichia coli. Frontiers in Pharmacology, 2020, 11: 581001. https://doi.org/10.3389/fphar.2020.581001
Zuo, R. M., Jiao, J. Y., Chen, N., et al. Carnosic acid suppressed the formation of NETs in alcoholic hepatosteatosis based on P2X7R-NLRP3 axis. Phytomedicine, 2023, 110: 154599. https://doi.org/10.1016/j.phymed.2022.154599
Zhao, Y., Sedighi, R., Wang, P., et al. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. Journal of Agricultural and Food Chemistry, 2015, 63: 4843–4852. https://doi.org/10.1021/acs.jafc.5b01246
Wang, H., Wang, J., Liu, Y., et al. Interaction mechanism of carnosic acid against glycosidase ( α-amylase and α-glucosidase). International Journal of Biological Macromolecules, 2019, 138: 846–853. https://doi.org/10.1016/j.ijbiomac.2019.07.179
Park, J. Y., Kim, J. H., Kim, Y. M., et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorganic & Medicinal Chemistry, 2012, 20: 5928–5935. https://doi.org/10.1016/j.bmc.2012.07.038
Tock, M. L. A., Combrinck, S., Kamatou, G., et al. Antibacterial screening, biochemometric and bioautographic evaluation of the Non-Volatile bioactive components of three indigenous South African Salvia species. Antibiotics, 2022, 11: 901. https://doi.org/10.3390/antibiotics11070901
Aoyagi, Y., Takahashi, Y., Fukaya, H., et al. Semisynthesis of isetexane diterpenoid analogues and their cytotoxic activity. Chemical & Pharmaceutical Bulletin, 2006, 54: 1602–1604. https://doi.org/10.1248/cpb.54.1602
Chen, J. J., Wu, H. M., Peng, C. F., et al. seco-Abietane diterpenoids, a phenylethanoid derivative, and antitubercular constituents from Callicarpa pilosissima. Journal of Natural Products, 2009 , 72: 223-228. https://doi.org/10.1021/np800721f.
Yuan, R. Y., Zhuoma, D. Z., Wei, Y. L., et al. Two new abietane diterpenes from Rosmarinus officinalis. Chinese Traditional and Herbal Drugs, 2019, 50: 4853–4858.
Mahmoud, A. A., Al-Shihry, S. S., Son, B. W. Diterpenoid quinones from Rosemary ( Rosmarinus officinalis L.). Phytochemistry, 2005, 66: 1685–1690. https://doi.org/10.1016/j.phytochem.2005.04.041
Tan, N., Topçu, G., Ulubelen, A. Norabietane diterpenoids and other terpenoids from Salvia recognita. Phytochemistry, 1998, 49: 175–178. https://doi.org/10.1016/s0031-9422(97)01056-x
Zhang, Y., Adelakun, T. A., Qu, L., et al. New terpenoid glycosides obtained from Rosmarinus officinalis L. aerial parts. Fitoterapia, 2014, 99: 78–85. https://doi.org/10.1016/j.fitote.2014.09.004
Liang H, Guan M, Li T, et al. Critical review on biological effect and mechanisms of diterpenoids in Rosmarinus officinalis. Food & Medicine Homology, 2025,https://doi.org/10.26599/FMH.2025.9420021