AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Research progress on the mechanism of functional activity of edible fungi polysaccharides—focusing intestinal mucus as a key and entry point

Yun-Yan YuYa-Ning DuanSai MaQiu-Hui HuGao-Xing Ma( )
Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China

These authors contributed equally to this work.

Show Author Information

Highlights

(1) The direct and indirect mechanism of immune function of edible fungi polysaccharides.

(2) The function of the intestinal mucus barrier in intestinal immunity.

(3) Mucins and edible fungi polysaccharides engage in electrostatic interactions.

(4) Interaction of polysaccharides with mucins is mediated by intestinal microorganisms.

Graphical Abstract

Edible fungi polysaccharide is a kind of natural active substance, which plays an important role in immune regulation. The research on the mechanism of polysaccharide activity in the early stage mainly focused on the direct action mechanism between polysaccharide and cell, and the indirect action mechanism between polysaccharide and microbe and cell. It mainly focused on the enhancement of immune cells and the regulation of immune active factors, as well as the regulation of intestinal microenvironment homeostasis. Due to the complexity of the intestinal environment, polysaccharides need to interact with the mucous layer of the intestinal tract before entering the intestinal tract to play the function of immune activity. This interaction will change the structure, viscosity and dispersion of polysaccharides, thus affecting the activity of polysaccharides in the body. Therefore, the interaction between polysaccharide and mucus layer is also extremely important. Edible fungi polysaccharides can supplement mucinoglycan to change the glycosylation level of mucin, and also affect the abundance of mucin symbiotic flora, thus changing the secretion of mucin. As prebiotics, the short-chain fatty acids produced by polysaccharides can not only directly act on intestinal epithelial cells, but also maintain energy generation. It can also stimulate goblet cells and maintain mucus barrier homeostasis. The effect of the interaction between polysaccharide and intestinal mucus on intestinal immune activity can be a new direction to study the mechanism of polysaccharide activity.

Abstract

Edible fungi polysaccharide is a naturally active substance with a complex structure, which has immunomodulatory activity, can regulate intestinal flora, and reduces the body’s inflammatory response. Currently, studies on the immune activity of polysaccharides from edible fungi mainly focus on intestinal immunity. Based on the current research direction on the immune activity mechanism of polysaccharides, this paper summarized the direct effects of polysaccharides on intestinal immune cells and the indirect regulatory effects mediated by intestinal flora. At the same time, we found that the active function of polysaccharides needs to pass through the intestinal mucus layer first. The intestinal mucus layer is rich in mucins and special microorganisms with mucins as the carbon source, which act as the first line of defense of the intestinal barrier. The interaction between polysaccharides and intestinal mucins will affect the integrity of the intestinal barrier. And the interaction between polysaccharides and intestinal mucin, to provide a new strategy for the study of the activity mechanism of edible fungi polysaccharides.

References

[1]

Yang, M. Y., Tarun, B., Hari, P. D., et al. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: a comprehensive review. Trends in Food Science & Technology, 2019, 92: 94–110. https://doi.org/10.1016/j.jpgs.2019.08.009

[2]

Chen, Y. L. The nutritional value of edible mushrooms and their function in healthcare. Edible and Medicinal Mushrooms, 2014, 1: 14–18. https://doi.org/10.3969/j.issn.1000-6966.2014.09.003

[3]

Daou, C., Zhang, H. Oat beta-glucan: its role in health promotion and prevention of diseases. Comprehensive Reviews in Food Science and Food Safety, 2012, 11: 355–365. https://doi.org/10.1111/j.1541-4337.2012.00189.x

[4]

Kumar, V., Sinha, A. K., Makkar, H. P., et al. Dietary roles of non-starch polysaccharides in human nutrition: a review. Critical Reviews in Food Science and Nutrition, 2012, 52: 899–935. https://doi.org/10.1080/10408398.2010.512671

[5]

Tzianabos, A. O. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clinical Microbiology Reviews, 2000, 13: 523–533. https://doi.org/10.1128/CMR.13.4.523

[6]

Li, S. Q., Dai, S. H., Shah, N. P. Sulfonation and antioxidative evaluation of polysaccharides from Pleurotus mushroom and Streptococcus thermophilus bacteria: a review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16: 282–294. https://doi.org/10.1111/1541-4337.12252

[7]

Huang, X. J., Nie, S. P., Xie, M. Y. Interaction between gut immunity and polysaccharides. Critical Reviews in Food Science and Nutrition, 2017, 57: 2943–2955. https://doi.org/10.1080/10408398.2015.1079165

[8]

Wu, Q. Q., Wang, Q. T., Fu, J. F., et al. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: a review of the mechanisms. Food & Function, 2019, 10: 2330–2339. https://doi.org/10.1039/c8fo02375a

[9]

Li, Y., Wang, X., Ma, X., et al. Natural polysaccharides and their derivates: a promising natural adjuvant for tumor immunotherapy. Frontiers in Pharmacology, 2021, 12: 621813. https://doi.org/10.3389/fphar.2021.621813

[10]

Fang, L. L., Zhang, Y. Q., Xie, J. B., et al. Royal sun medicinal mushroom, Agaricus brasiliensis (Agaricomycetidae), derived polysaccharides exert immunomodulatory activities in vitro and in vivo. International Journal of Medicinal Mushrooms, 2016, 18: 123–132. https://doi.org/10.1615/IntJMedMushrooms.v18.i2.30

[11]

Xing, H. J., Hou, L., Sun, Y., et al. Anti-gastric tumor effect of Ganoderma polysaccharides in vitro and in vivo. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23: 116–120. https://doi.org/10.13422/j.cnki.syfjx.2017130116

[12]

Jayachandran, M., Chen, J. L., Chung, S. S. M., et al. A critical review on the impacts of β-glucans on gut microbiota and human health. The Journal of Nutritional Biochemistry, 2018, 61: 101–110. https://doi.org/10.1016/j.jnutbio.2018.06.010

[13]

Zheng, Y. J., Ren, W. Y., Zhang, L. N., et al. A review of the pharmacological action of Astragalus polysaccharide. Frontiers in Pharmacology, 2020, 11: 349. https://doi.org/10.3389/fphar.2020.00349

[14]

Vo, T. S., Ngo, D. H., Kang, K. H., et al. The beneficial properties of marine polysaccharides in alleviation of allergic responses. Molecular Nutrition & Food Research, 2015, 59: 129–138. https://doi.org/10.1002/mnfr.201400412

[15]

Xu, D. D., Wang, H. Y., Zheng, W., et al. Charaterization and immunomodulatory activities of polysaccharide isolated from Pleurotus eryngii. International Journal of Biological Macromolecules, 2016, 92: 30–36. https://doi.org/10.1016/j.ijbiomac.2016.07.016

[16]

Wang, H. M., Zhang, J. S., Feng, T., et al. Immunoregulatory effects of Flammulina velutipes fruiting body polysaccharide FVPBl on mouse B cells. Acta Edulis Fungi, 2021, 28: 69–76. https://doi.org/10.16488/j.cnki.1005-9873.2021.02.010

[17]

Li, W., Cai, Z. N., Mehmood, S., et al. Anti-inflammatory effects of Morchella esculenta polysaccharide and its derivatives in fine particulate matter-treated NR8383 cells. International Journal of Biological Macromolecules, 2019, 129: 904–915. https://doi.org/10.1016/j.ijbiomac.2019.02.088

[18]

Yuan, Y., Sun, M. Mechanism of impact of Astragalus mongholicus polysaccharides on lipopolysaccharide-induced damage in intestinal epithelial cells. World Chinese Journal of Digestology, 2008, 16: 15–19. https://doi.org/10.11569/wcjd.v16.i1.15

[19]
Li, Y., Niu, L. L., Guan, X. Y., et al. Poria cocos polysaccharides ameliorates Doxorubicin-induced myocardial cell injury by inhibiting inflammation and oxidative stress. Chinese Archives of Traditional Chinese Medicine, 2024 : 1–13.
[20]
Liu, D., Mei, X. Y., Mao, Y. T., et al. Lentinus edodes mycelium polysaccharide inhibits AGEs-induced HUVECs pyroptosis by regulating LncRNA MALAT1/miR-199b/mTOR axis and NLRP3/Caspase-1/GSDMD pathway. International Journal of Biological Macromolecules, 2024 , 267: 131387. https://doi.org/10.1016/j.ijbiomac.2024.131387
[21]

Hu, X. Y., Yu, Q., Hou K. Y., et al. Regulatory effects of Ganoderma atrum polysaccharides on LPS-induced inflammatory macrophages model and intestinal-like Caco-2/macrophages co-culture inflammation model. Food and Chemical Toxicology, 2020, 140: 111321. https://doi.org/10.1016/j.fct.2020.111321

[22]

Ma, L. S., Chen, H. X., Dong, P., et al. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chemistry, 2013, 139: 503–508. https://doi.org/10.1016/j.foodchem.2013.01.030

[23]

Duan, Y. Y., Feng, J., Tang, C. H., et al. Comparison of physicochemical characteristics and stimulative activity on Dectin-1 receptor and macrophages between extracellular polysaccharides of parental and hybrid Ganoderma lucidum strains. Acta Edulis Fungi, 2023, 30: 60–67. https://doi.org/10.16488/j.cnki.1005-9873.2023.03.007

[24]

Deng, C., Shang, J. Y., Fu, H. T., et al. Mechanism of the immunostimulatory activity by a polysaccharide from Dictyophora indusiate. International Journal of Biological Macromolecules, 2016, 91: 752–759. https://doi.org/10.1016/j.ijbiomac.2016.06.024

[25]

Liu, J., Zhou, S., Li, S. D., et al. Characterization and Dectin-l activation activity of polysaccharides from fruiting bodies of five edible fungi. Acta Edulis Fungi, 2021, 28: 87–95. https://doi.org/10.16488/j.cnki.1005-9873.2021.05.011

[26]

Nie, S. P., Wang, Y. X., Yin, J. Y. Research progress on relative ordered structure of polysaccharides from edible fungi. Journal of Chinese Institute of Food Science and Technology, 2021, 21: 1–24. https://doi.org/10.16429/j.1009-7848.2021.08.001

[27]

Guo, Y. X., Chen, X. F., Gong, P., et al. Advances in the in vitro digestion and fermentation of polysaccharides. International Journal of Food Science & Technology, 2021, 56: 4970–4982. https://doi.org/10.1111/ijfs.15308

[28]

Zhang, H. N., Jiang, F. C., Zhang, J. S., et al. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: a review. International Journal of Biological Macromolecules, 2022, 204: 169–192. https://doi.org/10.1016/j.ijbiomac.2022.01.166

[29]

Lee, B. H., Huang, S. C., Hou, C. Y., et al. Effect of polysaccharide derived from dehulled adlay on regulating gut microbiota and inhibiting Clostridioides difficile in an in vitro colonic fermentation model. Food Chemistry, 2023, 410: 135410. https://doi.org/10.1016/ j.foodchem.2023.135410

[30]

Song, X. J., Feng, Z. F., Tan, J. B., et al. Dietary administration of Pleurotus ostreatus polysaccharides (POPS) modulates the non-specific immune response and gut microbiota diversity of Apostichopus japonicus. Aquaculture Reports, 2021, 19: 100578. https://doi.org/10.1016/j.aqrep.2020.100578

[31]

Ren, Y. L., Geng, Y., Du, Y., et al. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. The Journal of Nutritional Biochemistry, 2018, 57: 67–76. https://doi.org/10.1016/j.jnutbio.2018.03.005

[32]

Yang, G., Xu, Z. J., Tian, X. L., et al. Intestinal microbiota and immune related genes in sea cucumber ( Apostichopus japonicus) response to dietary β-glucan supplementation. Biochemical and Biophysical Research Communications, 2015, 458: 98–103. https://doi.org/10.1016/j.bbrc.2015.01.074

[33]
Xu, Y. Y., Xie, L. Y., Zhang, Z. Y., et al. Tremella fuciformis polysaccharides inhibited colonic inflammation in dextran sulfate sodium-treated mice via Foxp3+ T cells, gut microbiota, and bacterial metabolites. Frontiers in Immunology, 2021 , 12: 648162. https://doi.org/10.3389/fimmu.2021.648162
[34]

Chen, M. Y., Xiao, D., Liu, W., et al. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. International Journal of Biological Macromolecules, 2020, 155: 890–902. https://doi.org/10.1016/j.ijbiomac.2019.11.047

[35]

Chen, J. J., Chen, X. Y., Dong, X., et al. Effects of Hericium erinaceus polysaccharide on gene expression of tight junction in intestinal porcine enterocyte cells induced by oxidative stress. Chinese Veterinary Science, 2017, 47: 128–134. https://doi.org/10.16656/j.issn.1673-4696.2017.01.019

[36]

Huo, W. Y., Feng, Z. P., Hu, S. Y., et al. Effects of polysaccharides from wild morels on immune response and gut microbiota composition in non-treated and cyclophosphamide-treated mice. Food & Function, 2020, 11: 4291–4303. https://doi.org/10.1039/d0fo00597e

[37]
Song, X. L., Shen, Q., Liu, M., et al. Antioxidant and hepatoprotective effects of intracellular mycelium polysaccharides from Pleurotus geesteranus against alcoholic liver diseases, International Journal of Biological Macromolecules, 2018 , 114: 979-988. https://doi.org/10.1016/j.ijbiomac.2018.04.001
[38]

Basso, A. M. M., de Castro, R. J. A., de Castro, T. B., et al. Immunomodulatory activity of β-glucan-containing exopolysaccharides from Auricularia auricular in phagocytes and mice infected with Cryptococcus neoformans. Medical Mycology, 2020, 58: 227–239. https://doi.org/10.1093/mmy/myz042

[39]

Chen, X., Fang, D. L., Zhao, R. Q., et al. Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide. International Journal of Biological Macromolecules, 2019, 140: 505–514. https://doi.org/10.1016/j.ijbiomac.2019.08.163

[40]

Su, Y., Li, H. X., Hu, Z. Y., et al. Research on degradation of polysaccharides during Hericium erinaceus fermentation. LWT, 2023, 173: 114276. https://doi.org/10.1016/j.lwt.2022.114276

[41]

Li, L., Su, Y., Feng, Y., et al. A comparison study on digestion, anti-inflammatory and functional properties of polysaccharides from four Auricularia species. International Journal of Biological Macromolecules, 2020, 154: 1074–1081. https://doi.org/10.1016/j.ijbiomac.2020.02.324

[42]

Sun, Y., Hu, X. W., Meng, X. W., et al. Dietary supplementation with polysaccharides from Rhizoma dioscoreae resulting in the enhanced immunity and the structural modulation of the intestinal microbiota in Luciobarbus capito. Aquaculture, 2023, 577: 740001. https://doi.org/10.1016/j.aquaculture.2023.740001

[43]

Luo, Q. Y., Li, X. J., Li, H. Y., et al. Effect of in vitro simulated digestion and fecal fermentation on Boletus auripes polysaccharide characteristics and intestinal flora. International Journal of Biological Macromolecules, 2023, 249: 126461. https://doi.org/10.1016/j.ijbiomac.2023.126461

[44]

Lin, N., Li, M. M., Han, Z. X., et al. Polysaccharides from Auricularia cornea var. Li.: Structural alterations during in vitro digestion and its potent immunomodulatory properties on macrophages. Food Bioscience, 2024, 59: 104014. https://doi.org/10.1016/j.fbio.2024.104014

[45]

Yuan, D., Li, C., Huang, Q., et al. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Critical Reviews in Food Science and Nutrition, 2023, 63: 5890–5910. https://doi.org/10.1080/10408398.2022.2025535

[46]

Huo, J. Y., Wu, Z. Y., Sun, W. Z., et al. Protective effects of natural polysaccharides on intestinal barrier injury: a review. Journal of Agricultural and Food Chemistry, 2022, 70: 711–735. https://doi.org/10.1021/acs.jafc.1c05966

[47]

Hollingsworth, M. A., Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nature Reviews Cancer, 2004, 4: 45–60. https://doi.org/10.1038/nrc1251

[48]

Kumari, K., Kumar, A., Manjur, A. T., et al. Bioactives promiscuity of mucin: insight from multi-spectroscopic, thermodynamic, and molecular dynamic simulation analyses. Langmuir, 2023, 39: 4589–4600. https://doi.org/10.1021/acs.langmuir.2c03268

[49]

Su, Y. Y., Cheng, S. S., Ding, Y. X., et al. A comparison of study on intestinal barrier protection of polysaccharides from Hericium erinaceus before and after fermentation. International Journal of Biological Macromolecules, 2023, 233: 123558. https://doi.org/10.1016/j.ijbiomac.2023.123558

[50]

Pan, L., Fu, T. Y., Cheng, H., et al. Polysaccharide from edible alga Gloiopeltis furcata attenuates intestinal mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans. Carbohydrate Polymers, 2022, 278: 118921. https://doi.org/10.1016/j.carbpol.2021.118921

[51]

Wu, Y., Li, Y. F., Ruan, Z., et al. Puerarin rebuilding the mucus layer and regulating mucin-utilizing bacteria to relieve ulcerative colitis. Journal of Agricultural and Food Chemistry, 2020, 68: 11402–11411. https://doi.org/10.1021/acs.jafc.0c04119

[52]

Meldrum, O. W., Yakubov, G. E., Bonilla, M. R., et al. Mucin gel assembly is controlled by a collective action of non-mucin proteins, disulfide bridges, Ca2+-mediated links, and hydrogen bonding. Scientific Reports, 2018, 8: 5802. https://doi.org/10.1038/s41598-018-24223-3

[53]

Ma, J., Zhang, J. Q., Wang, Y. F., et al. Modified Gegen Qinlian decoction ameliorates DSS-induced chronic colitis in mice by restoring the intestinal mucus barrier and inhibiting the activation of γδT17 cells. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2023, 111: 154660. https://doi.org/10.1016/j.phymed.2023.154660

[54]

Luis, A. S., Hansson, G. C. Intestinal mucus and their glycans: a habitat for thriving microbiota. Cell Host & Microbe, 2023, 31: 1087–1100. https://doi.org/10.1016/j.chom.2023.05.026

[55]

Bansil, R., Turner, B. S. Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid & Interface Science, 2006, 11: 164–170. https://doi.org/10.1016/j.cocis.2005.11.001

[56]

Pothuraju, R., Chaudhary, S., Rachagani, S., et al. Mucins, gut microbiota, and postbiotics role in colorectal cancer. Gut Microbes, 2021, 13: 1974795. https://doi.org/10.1080/19490976.2021.1974795

[57]
Paola, P., Patrice, D. C. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut, 2020 , 69: 2232. https://doi.org/10.1136/gutjnl-2020-322260
[58]

Albillos, A., de Gottardi, A., Rescigno, M. The gut-liver axis in liver disease: pathophysiological basis for therapy. Journal of Hepatology, 2020, 72: 558–577. https://doi.org/10.1016/j.jhep.2019.10.003

[59]

Leon-Coria, A., Kumar, M., Workentine, M., et al. Muc2 mucin and nonmucin microbiota confer distinct innate host defense in disease susceptibility and colonic injury. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11: 77–98. https://doi.org/10.1016/j.jcmgh.2020.07.003

[60]

Birchenough, G. M. H., Schroeder, B. O., Sharba, S., et al. Muc2-dependent microbial colonization of the jejunal mucus layer is diet sensitive and confers local resistance to enteric pathogen infection. Cell Reports, 2023, 42: 112084. https://doi.org/10.1016/j.celrep.2023.112084

[61]

Hino, S., Mizushima, T., Kaneko, K., et al. Mucin-Derived O-glycans act as endogenous fiber and sustain mucosal immune homeostasis via short-chain fatty acid production in rat cecum. The Journal of Nutrition, 2020, 150: 2656–2665. https://doi.org/10.1093/jn/nxaa097

[62]

Melo-Gonzalez, F., Fenton, T. M., Forss, C., et al. Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. Journal of Biological Chemistry, 2018, 293: 8543–8553. https://doi.org/10.1074/jbc.M117.789305

[63]
Jin, X. M., Liu, Y., Wang, J. Q., et al. β-Glucan-triggered Akkermansia muciniphila expansion facilitates the expulsion of intestinal helminth via TLR2 in mice. Carbohydrate Polymers, 2022 , 275: 118719. https://doi.org/10.1016/j.carbpol.2021.118719.
[64]
Wang, Y. J., Wang, H. Y., Li, Q. M., et al. Dendrobium fimbriatum polysaccharide ameliorates DSS-induced intestinal mucosal injury by IL-22-regulated intestinal stem cell regeneration. International Journal of Biological Macromolecules, 2023 , 230: 123199. https://doi.org/10.1016/j.ijbiomac.2023.123199
[65]

Cao, K. X., Wu, J. R., Li, M., et al. Effect of thiolation modification of Codonopsis pilosula polysaccharide on intestinal adhesion and colonization of Lactobacillus rhamnosus. Journal of Food Science and Technology, 2022, 40: 45–54. https://doi.org/10.12301/spxb202100605

[66]
Zhao, C., Sun, C., Yuan, J., et al. Hericium caput-medusae (Bull.:Fr.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion. Journal of Ethnopharmacology, 2023 , 300: 115721. https://doi.org/10.1016/j.jep.2022.115721
[67]
Hao, R. L., Zhou, X., Zhao, X. Y., et al. Flammulina velutipes polysaccharide counteracts cadmium-induced gut injury in mice via modulating gut inflammation, gut microbiota and intestinal barrier. Science of the Total Environment, 2023 , 877: 162910. https://doi.org/10.1016/j.scitotenv.2023.162910
[68]

Wei, S. X., Wang, L. F., Chen, X. D., et al. Polysaccharide from Boletus aereus ameliorates DSS-induced colitis in mice by regulating the MANF/MUC2 signaling and gut microbiota. International Journal of Biological Macromolecules, 2024, 266: 131232. https://doi.org/10.1016/j.ijbiomac.2024.131232

[69]

Ying, M. X., Yu, Q., Zheng, B., et al. Cultured Cordyceps sinensis polysaccharides attenuate cyclophosphamide-induced intestinal barrier injury in mice. Journal of Functional Foods, 2019, 62: 103523. https://doi.org/10.1016/j.jff.2019.103523

[70]

Ying, M., Yu, Q., Zheng, B., et al. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydrate Polymers, 2020, 235: 115957. https://doi.org/10.1016/j.carbpol.2020.115957

[71]

Su, L., Xin, C. X., Yang, J. T., et al. A polysaccharide from Inonotus obliquus ameliorates intestinal barrier dysfunction in mice with type 2 diabetes mellitus. International Journal of Biological Macromolecules, 2022, 214: 312–323. https://doi.org/10.1016/j.ijbiomac.2022.06.071

[72]
Xiao, H. Y., Li, H. L., Wen, Y. F., et al. Tremella fuciformis polysaccharides ameliorated ulcerative colitis via inhibiting inflammation and enhancing intestinal epithelial barrier function. International Journal of Biological Macromolecules, 2021 , 180: 633–642. https://doi.org/10.1016/j.ijbiomac.2021.03.083
[73]

Shu, Y. F., Huang, Y. J., Dong, W., et al. The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism. International Journal of Biological Macromolecules, 2023, 246: 125662. https://doi.org/10.1016/j.ijbiomac.2023.125662

[74]

Qi, M., Chu, S. H., Wang, W. X., et al. Safflower polysaccharide ameliorates acute ulcerative colitis by regulating STAT3/NF-κB signaling pathways and repairing intestinal barrier function. Biomedicine & Pharmacotherapy, 2024, 174: 116553. https://doi.org/10.1016/j.biopha.2024.116553

[75]

Sun, Y., Fan, L., Mian, W. G., et al. Modified apple polysaccharide influences MUC-1 expression to prevent ICR mice from colitis-associated carcinogenesis. International Journal of Biological Macromolecules, 2018, 120: 1387–1395. https://doi.org/10.1016/j.ijbiomac.2018.09.142

[76]

Han, R., Ma, Y. X., Xiao, J. B., et al. The possible mechanism of the protective effect of a sulfated polysaccharide from Gracilaria Lemaneiformis against colitis induced by dextran sulfate sodium in mice. Food and Chemical Toxicology, 2021, 149: 112001. https://doi.org/10.1016/j.fct.2021.112001

[77]
Lu, H. Y., Shen, M. Y., Chen, T., et al. Mesona chinensis Benth polysaccharides alleviate dss-induced ulcerative colitis via inhibiting of TLR4/MAPK/NF-κB signaling pathways and modulating intestinal microbiota. Molecular Nutrition & Food Research, 2022 , 66: e2200047. https://doi.org/10.1002/mnfr.202200047
[78]
Li, R., Yang, P., Liu, B. W., et al. Lycium barbarum polysaccharide remodels colon inflammatory microenvironment and improves gut health. Heliyon, 2024 , 10: e30594. https://doi.org/10.1016/j.heliyon.2024.e30594
[79]

Chen, A. J., Liu, Y. T., Zhang, T., et al. Chain conformation, mucoadhesive properties of fucoidan in the gastrointestinal tract and its effects on the gut microbiota. Carbohydrate Polymers, 2023, 304: 120460. https://doi.org/10.1016/j.carbpol.2022.120460

[80]

Kai, L. X., Zong, X., Jiang, Q. J., et al. Protective effects of polysaccharides from Atractylodes macrocephalae Koidz. against dextran sulfate sodium induced intestinal mucosal injury on mice. International Journal of Biological Macromolecules, 2022, 195: 142–151. https://doi.org/10.1016/j.ijbiomac.2021.12.042

[81]

Lan, Y., Ma, Z. Y., Chang, L. L., et al. Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis. International Journal of Biological Macromolecules, 2023, 236: 123797. https://doi.org/10.1016/j.ijbiomac.2023.123797

[82]
Nie, C., Zhao, Y.Y., Wang, P. J., et al. Momordica charantia polysaccharide intervention ameliorates the symptoms of dextran sulfate sodium (DSS)-induced colitis by modulating gut microbiota and inhibiting inflammation. Journal of Functional Foods, 2024 , 112: 105970. https://doi.org/10.1016/j.jff.2023.105970
[83]

Liu, C., Qiu, Z. C., Gu, D. Y., et al. A novel anti-inflammatory polysaccharide from blackened jujube: structural features and protective effect on dextran sulfate sodium-induced colitic mice. Food Chemistry, 2023, 405: 134869. https://doi.org/10.1016/j.foodchem.2022.134869

[84]

Peng, Z. H., Wang, R. Q. Research advances in mucin. Chinese Journal of Gastroenterology and Hepatology, 2010, 19: 952–955. https://doi.org/10.3969/j.issn.1006-5709.2010.10.027

[85]

Bansil, R., Turner, B. S. The biology of mucus: composition, synthesis and organization. Advanced Drug Delivery Reviews, 2018, 124: 3–15. https://doi.org/10.3969/j.addr.2017.09.023

[86]

He, X., Zhang, M. H., Lu, Y. et al. Protection and regulation mechanism of mucins in intestinal mucosal barrier. Medical Recapitulate, 2017, 23: 1–5. https://doi.org/10.3969/j.issn.1006-2084.2017.01.001

[87]

Thornton, D. J., Rousseau, K., McGuckin, M. A. Structure and function of the polymeric mucins in airways mucus. Annual Review of Physiology, 2008, 70: 459–486. https://doi.org/10.1146/annurev.physiol.70.113006.100702

[88]

Dekker, J., Strous, G. J. Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, is N-glycosylation-dependent, and precedes initial O-glycosylation. Journal of Biological Chemistry, 1990, 265: 18116–18122. https://doi.org/10.1016/S0021-9258(17)44725-9

[89]

Ahmad, K., Zhang, Y., Chen, P., et al. Chitosan interaction with stomach mucin layer to enhances gastric retention and mucoadhesive properties. Carbohydrate Polymers, 2024, 333: 121926. https://doi.org/10.1016/j.carbpol.2024.121926

[90]

Ma, S., Li, X. Y., Tao, Q., et al. The effect of in vitro digestion on the interaction between polysaccharides derived from Pleurotus eryngii and intestinal mucus. Food Science & Nutrition, 2023, 12: 1318–1329. https://doi.org/10.1002/fsn3.3845

[91]

Nehrling, E. W., Bartholome, A. L., Albin, D. M., et al. Short chain fatty acid supplementation increases MUC2 expression and mucin production in a short bowel piglet receiving TPN. The FASEB Journal, 2010, 24: 102.3. https://doi.org/10.1096/fasebj.24.1_supplement.102.3

[92]

Hansson, G. C. Mucins and the microbiome. Annual Review of Biochemistry, 2020, 89: 769–793. https://doi.org/10.1146/annurev-biochem-011520-105053

[93]

Singh, R. P. Glycan utilisation system in Bacteroides and Bifidobacteri and their roles in gut stability and health. Applied Microbiology and Biotechnology, 2019, 103: 7287–7315. https://doi.org/10.1007/s00253-019-10012-z

[94]

Ndeh, D., Gilbert, H. J. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiology Reviews, 2018, 42: 146–164. https://doi.org/10.1093/femsre/fuy002

[95]

Harata, G., Yoda, K., Wang, R., et al. Species- and age/generation-dependent adherence of Bifidobacterium bifidum to human intestinal mucus in vitro. Microorganisms, 2021, 9: 542. https://doi.org/10.3390/microorganisms9030542

[96]

Fernandez-Julia, P. J., Munoz-Munoz, J., van Sinderen, D. A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. International Journal of Biological Macromolecules, 2021, 181: 877–889. https://doi.org/10.1016/j.ijbiomac.2021.04.069

[97]

Lammerts van Bueren, A., Mulder, M., Leeuwen, S. V., et al. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Scientific Reports, 2017, 7: 40478. https://doi.org/10.1038/srep40478

[98]

Zhao, T., Zhang, Y., Nan, L. H., et al. Impact of structurally diverse polysaccharides on colonic mucin O-glycosylation and gut microbiota. NPJ Biofilms and Microbiomes, 2023, 9: 97. https://doi.org/10.1038/s41522-023-00468-3

[99]

Tuncil, Y. E., Thakkar, R. D., Arioglu-Tuncil, S., et al. Subtle variations in dietary-fiber fine structure differentially influence the composition and metabolic function of gut microbiota. mSphere, 2020, 5: e00180–20. https://doi.org/10.1128/mSphere.00180-20

[100]
Wrzosek, L., Miquel, S., Noordine, M. L., et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitziiinfluence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biology, 2013 , 11: 61. https://doi.org/10.1186/1741-7007-11-61
[101]

Burger-van Paassen, N., Vincent, A., Puiman, P. J., et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. The Biochemical Journal, 2009, 420: 211–219. https://doi.org/10.1042/BJ20082222

[102]

Willemsen, L. E., Koetsier, M. A., van Deventer, S. J., et al. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut, 2003, 52: 1442–1447. https://doi.org/ 10.1136/gut.52.10.1442

[103]

Hu, W., Di, Q., Liang, T., et al. Effects of in vitro simulated digestion and fecal fermentation of polysaccharides from straw mushroom ( Volvariella volvacea) on its physicochemical properties and human gut microbiota. International Journal of Biological Macromolecules, 2023, 239: 124188. https://doi.org/10.1016/j.ijbiomac.2023.124188

[104]

Kozarski, M., Klaus, A., van Griensven, L., et al. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: nature of the application. Food Science and Human Wellness, 2023, 12: 378–396. https://doi.org/10.1016/j.fshw.2022.07.040

[105]

Wei, S. X., Wang, L. F., Chen, X. D., et al. Anti-inflammatory activity of Boletus aereus polysaccharides: involvement of digestion and gut microbiota fermentation. Food Chemistry: X, 2024, 21: 101052. https://doi.org/10.1016/j.fochx.2023.101052

[106]

Jayachandran, M., Chung, S. S. M., Xu, B. A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health. Critical Reviews in Food Science and Nutrition, 2020, 60: 2265–2276. https://doi.org/10.1080/10408398.2019.1632789

[107]

Gao, Z. P., Wu, H., Geng, X., et al. Recent advances in the relationship between Akkermansia muciniphlia and intestinal barrier function. Food Science, 2018, 39: 296–302. https://doi.org/10.7506/spkx1002-6630-201819045

[108]

Li, S. J., Li, M. X., Yue, H., et al. Structural elucidation of a pectic polysaccharide from Fructus Mori and its bioactivity on intestinal bacteria strains. Carbohydrate Polymers, 2018, 186: 168–175. https://doi.org/10.1016/j.carbpol.2018.01.026

[109]

He, X. Y., He, J. J., Zhen, N. N., et al. Study on anti-obesity effect and modulation of gut microbiota by Astragalus polysaccharides in mice. World Chinese Medicine, 2016, 11: 2379–2384, 2388. https://doi.org/10.3969/j.issn.1673-7202.2016.11.046

[110]

Luis, A. S., Jin, C., Pereira, G. V., et al. A single sulfatase is required to access colonic mucin by a gut bacterium. Nature, 2021, 598: 332–337. https://doi.org/10.1038/s41586-021-03967-5

[111]
Zong, X., Zhang, H., Zhu, L. Y., et al. Auricularia auricula polysaccharides attenuate obesity in mice through gut commensal Papillibacter cinnamivorans. Journal of Advanced Research, 2023 , 52: 203–218. https://doi.org/10.1016/j.jare.2023.08.003
[112]

Katoh, T., Maeshibu, T., Kikkawa, K. I., et al. Identification and characterization of a sulfoglycosidase from Bifidobacterium bifidum implicated in mucin glycan utilization. Bioscience, Biotechnology, and Biochemistry, 2017, 81: 2018–2027. https://doi.org/10.1080/09168451.2017.1361810

[113]

Glover, J. S., Ticer, T. D., Engevik, M. A. Characterizing the mucin-degrading capacity of the human gut microbiota. Scientific Reports, 2022, 12: 8456. https://doi.org/10.1038/s41598-022-11819-z

Food & Medicine Homology
Article number: 9420042
Cite this article:
Yu Y-Y, Duan Y-N, Ma S, et al. Research progress on the mechanism of functional activity of edible fungi polysaccharides—focusing intestinal mucus as a key and entry point. Food & Medicine Homology, 2025, 2(1): 9420042. https://doi.org/10.26599/FMH.2025.9420042

322

Views

91

Downloads

0

Crossref

Altmetrics

Received: 06 August 2024
Revised: 27 August 2024
Accepted: 02 September 2024
Published: 18 September 2024
© National R & D Center for Edible Fungus Processing Technology 2024. Published by Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return