PDF (2.7 MB)
Collect
Submit Manuscript
Show Outline
Figures (10)

Show 1 more figures Hide 1 figures
Tables (1)
Table 1
Open Access | Online First

Quorum sensing inhibitor: an effective strategy to attenuate the virulence and drug resistance of Pseudomonas aeruginosa

Jin-Fang Zhou1Zhe-Wen Liang2Kun-Yuan Yin2Ying Wang2Wen Li2Tao Wang2Hong Chen3()Xiao-Juan Tan4()Mohsin Tanveer5Jin-Wei Zhou2()Zhi-Yong Guo1()
College of Biological & Pharmaceutical Sciences, China Three Gorges University
School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, China
Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu 241000, China
Tasmanian Institute of Agriculture, University of Tasmania Australia, Hobart 7270, Australia
Show Author Information

Highlights

(1) Pseudomonas aeruginosa is contributor to food spoilage and foodborne diseases.

(2) The pathogenicity and drug resistance of P. aeruginosa is related to quorum sensing.

(3) Quorum sensing inhibitor could reduce the drug resistance of P. aeruginosa.

Graphical Abstract

View original image Download original image
The synthesis of pyocyanin begins with chorismic acid. Chorismic acid is converted to phenazine-1-carboxylic acid through the action of gene clusters phz1 and phz2 and subsequently converted into pyocyanin catalyzed by PhzM and PhzS.

Abstract

Pseudomonas aeruginosa is a significant contributor to food spoilage and foodborne diseases. The primary strategy for preventing and controlling contamination by P. aeruginosa involves the application of antibacterial agents. However, the overuse or abuse of antimicrobial agents has accelerated the development of drug resistance. The control of spoilage and antimicrobial resistance in P. aeruginosa has emerged as a major food safety challenge. Numerous studies have established that the pathogenicity and drug resistance of P. aeruginosa are regulated by quorum sensing (QS). Therefore, inhibiting the QS system of P. aeruginosa is a promising approach to mitigate the pathogenicity and resistance of this pathogen. This review explores various QS systems of P. aeruginosa and their roles in bacterial pathogenesis and drug resistance. Additionally, it discusses the potential of small chemical molecules and quorum-quenching enzymes in attenuating the pathogenesis of P. aeruginosa, as well as the possibility of using QS inhibitors (QSIs) and antibiotics in future therapeutic approaches for P. aeruginosa-associated infections.

References

[1]

Bai, L., Liu, M., Sun, Y. Overview of food preservation and traceability technology in the smart cold chain system. Foods, 2023, 12: 2881. https://doi.org/10.3390/foods12152881

[2]

Tournas, V. H. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Reviews in Microbiology, 2005, 31: 33–44. https://doi.org/10.1080/10408410590886024

[3]

Wang, J., Ren, B., Bak. K. H., et al. Preservative effects of composite biopreservatives on goat meat during chilled storage: Insights into meat quality, high-throughput sequencing and molecular docking. LWT-Food Science and Technology, 2023, 184: 115033. https://doi.org/10.1016/j.lwt.2023.115033

[4]

Green, A. E., Amezquita, A., Le Marc, Y., et al. The consistent differential expression of genetic pathways following exposure of an industrial Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation. FEMS Microbiology Letters, 2018, 365: fny062. https://doi.org/10.1093/femsle/fny062

[5]

Warawa, J. M., Duan, X., Anderson, C. D., et al. Validated preclinical mouse model for therapeutic testing against multidrug-resistant Pseudomonas aeruginosa strains. Microbiology Spectrum, 2022, 10: e0269322. https://doi.org/10.1128/spectrum.02693-22

[6]

Haque, S., Ahmad, F., Dar, S. A., et al. Developments in strategies for quorum sensing virulence factor inhibition to combat bacterial drug resistance. Microbial Pathogenesis, 2018, 121: 293–302. https://doi.org/10.1016/j.micpath.2018.05.046

[7]

Chadha, J., Harjai, K., Chhibber, S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environmental Microbiolog, 2022, 24: 2630–2656. https://doi.org/10.1111/1462-2920.15784

[8]

Shastry, R. P., Abhinand, C. S. Targeting the Pseudomonas aeruginosa quorum sensing system to inhibit virulence factors and eradicate biofilm formation using AHL-analogue phytochemicals. Journal of Biomolecular Structure and Dynamics, 2024, 42: 1956–1965. https://doi.org/10.1080/07391102.2023.2202270

[9]

Karatuna, O., Yagci, A. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clinical Microbiology and Infection, 2010, 16: 1770–1775. https://doi.org/10.1111/j.1469-0691.2010.03177.x

[10]

de Kievit, T. R. Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 2009, 11: 279–288. https://doi.org/10.1111/j.1462-2920.2008.01792.x

[11]

Rezaie, P., Pourhajibagher, M., Chiniforush, N., et al. The Effect of quorum-sensing and efflux pumps interactions in Pseudomonas aeruginosa against photooxidative stress. Journal of Lasers in Medical Sciences, 2018, 9: 161–167. https://doi.org/10.15171/jlms.2018.30

[12]

Nealson, K. H., Platt, T., Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 1970, 104: 313–322. https://doi.org/10.1128/jb.104.1.313-322.1970

[13]

Juszczuk-Kubiak, E. Molecular aspects of the functioning of pathogenic bacteria biofilm based on quorum sensing (QS) signal-response system and innovative non-antibiotic strategies for their elimination. International Journal of Molecular Sciences, 2024, 25: 2655. https://doi.org/10.3390/ijms25052655

[14]

Eberl, L. N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Systematic and Applied Microbiology, 1999, 22: 493–506. https://doi.org/10.1016/S0723-2020(99)80001-0

[15]

Wilder, C. N., Diggle, S. P., Schuster, M. Cooperation and cheating in Pseudomonas aeruginosa: the roles of the las, rhl and pqs quorum-sensing systems. The ISME Journal, 2011, 5: 1332–1343. https://doi.org/10.1038/ismej.2011.13

[16]

Welsh, M. A., Blackwell, H. E. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiology Reviews, 2016, 40: 774–794. https://doi.org/10.1093/femsre/fuw009

[17]

Wade, D. S., Calfee, M. W., Rocha, E. R., et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 2005, 187: 4372–4380. https://doi.org/10.1128/JB.187.13.4372-4380.2005

[18]

Lee, J., Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 2015, 6: 26–41. https://doi.org/10.1007/s13238-014-0100-x

[19]

Meng, L., Liu, H., Dong, L., et al. Identification and proteolytic activity quantification of Pseudomonas spp. isolated from different raw milks at storage temperatures. Journal of Dairy Science, 2018, 101: 2897–2905. https://doi.org/10.3168/jds.2017-13617

[20]

Beaufort, N., Corvazier, E., Mlanaoindrou, S., et al. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: implication of matrilysis and receptor cleavage. PLoS One, 2013, 8: e75708. https://doi.org/10.1371/journal.pone.0075708

[21]

Beaufort, N., Seweryn, P., de Bentzmann, S., et al. Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa. Biochemical Journal, 2010, 428: 473–482. https://doi.org/10.1042/BJ20091806

[22]

Bonchi, C., Frangipani, E., Imperi, F., et al. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum. Antimicrobial Agents and Chemotherapy, 2015, 59: 5641–5646. https://doi.org/10.1128/AAC.01097-15

[23]

Oldak, E., Trafny, E. A. Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2005, 49: 3281–3288. https://doi.org/10.1128/AAC.49.8.3281-3288.2005

[24]

Galdino, A. C. M., de Oliveira, M. P., Ramalho, T. C., et al. Anti-Virulence strategy against the multidrug-resistant bacterial pathogen Pseudomonas aeruginosa: pseudolysin (Elastase B) as a potential druggable target. Current Protein and Peptide Science, 2019, 20: 471–487. https://doi.org/10.2174/1389203720666190207100415

[25]

Arora, D., Hall, S., Anoopkumar-Dukie, S., et al. Pyocyanin induces systemic oxidative stress, inflammation and behavioral changes in vivo. Toxicology Mechanisms and Methods, 2018, 28: 410–414. https://doi.org/10.1080/15376516.2018.1429038

[26]

Whiteley, M., Lee, K. M., Greenberg, E. P. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 13904–13909. https://doi.org/10.1073/pnas.96.24.13904

[27]

Sakhtah, H., Koyama, L., Zhang, Y., et al. The Pseudomonas aeruginosa efflux pump MexGHI- OpmD transports a natural phenazine that controls gene expression and biofilm development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: E3538–3547. https://doi.org/10.1073/pnas.1600424113

[28]

Meirelles, L. A., Newman, D. K. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Molecular Microbiology, 2018, 110: 995–1010. https://doi.org/10.1111/mmi.14132

[29]

Wolloscheck, D., Krishnamoorthy, G., Nguyen, J., et al. Kinetic control of quorum sensing in Pseudomonas aeruginosa by multidrug efflux pumps. ACS Infectious Diseases, 2018, 4: 185–195. https://doi.org/10.1021/acsinfecdis.7b00160

[30]

Meirelles, L. A., Perry, E. K., Bergkessel, M., et al. Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLoS Biology, 2021, 19: e3001093. https://doi.org/10.1371/journal.pbio.3001093

[31]

Perry, E. K., Meirelles, L. A., Newman, D. K. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nature Reviews Microbiology, 2022, 20: 129–142. https://doi.org/10.1038/s41579-021-00620-w

[32]

Sultan, M., Arya, R., Kim, K. K. Roles of two-component systems in Pseudomonas aeruginosa virulence. International Journal of Molecular Sciences, 2021, 22: 12152. https://doi.org/10.3390/ijms222212152

[33]

Mould, D. L., Botelho, N. J., Hogan, D. A. Intraspecies signaling between common variants of Pseudomonas aeruginosa increases production of quorum-sensing-controlled virulence factors. mBio, 2020, 11: e01865–20 . https://doi.org/10.1128/mBio.01865-20

[34]

Zhou, J. W., Luo, H. Z., Jiang, H., et al. Hordenine: a novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. Journal of Agricultural and Food Chemistry, 2018, 66: 1620–1628. https://doi.org/10.1021/acs.jafc.7b05035

[35]

Goswami, M., Espinasse, A., Carlson, E. E. Disarming the virulence arsenal of Pseudomonas aeruginosa by blocking two-component system signaling. Chemical Science, 2018, 9: 7332–7337. https://doi.org/10.1039/c8sc02496k

[36]

Fuchs, E. L., Brutinel, E. D., Jones, A. K., et al. The Pseudomonas aeruginosa Vfr regulator controls global virulence factor expression through cyclic AMP-dependent and -independent mechanisms. Journal of Bacteriology, 2010, 192: 3553–3564. https://doi.org/10.1128/JB.00363-10

[37]

Guragain, M., King, M. M., Williamson, K. S., et al. The Pseudomonas aeruginosa PAO1 two- component regulator CarSR regulates calcium homeostasis and calcium-induced virulence factor production through its regulatory targets CarO and CarP. Journal of Bacteriology, 2016, 198: 951–963. https://doi.org/10.1128/JB.00963-15

[38]

Dong, Y. H., Zhang, X. F., An, S. W., et al. A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa. Communicative & integrative Biology, 2008, 1: 88–96. https://doi.org/10.4161/cib.1.1.6717

[39]

Meng, X., Ahator, S. D., Zhang, L. H. Molecular mechanisms of phosphate stress activation of Pseudomonas aeruginosa quorum sensing systems. mSphere, 2020, 5: e00119–20. https://doi.org/10.1128/mSphere.00119-20

[40]
Ali, N. M., Chatta, S., Liaqat, I., et al. Pseudomonas aeruginosa associated pulmonary infections and in vitro amplification virulent rhamnolipid (rhlR) gene. Brazilian Journal of Biology, 2021 , 82: e228009. https://doi.org/10.1590/1519-6984.228009
[41]

McClure, C. D., Schiller, N. L. Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Current Microbiology, 1996, 33: 109–117. https://doi.org/10.1007/s002849900084

[42]

Davey, M. E., Caiazza, N. C., O'Toole, G. A. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2003, 185: 1027–1036. https://doi.org/10.1128/JB.185.3.1027-1036.2003

[43]

Boles, B. R., Thoendel, M., Singh, P. K. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Molecular Microbiology, 2005, 57: 1210–1223. https://doi.org/10.1111/j.1365-2958.2005.04743.x

[44]

Glick, R., Gilmour, C., Tremblay, J., et al. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. Journal of Bacteriology, 2010, 192: 2973–2980. https://doi.org/10.1128/JB.01601-09

[45]

Walsh, A. G., Matewish, M. J., Burrows, L. L., et al. Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa. Molecular Microbiology, 2000, 35: 718–727. https://doi.org/10.1046/j.1365-2958.2000.01741.x

[46]

Hancock, R. E. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clinical Infectious Diseases, 1998, 27: S93–99. https://doi.org/10.1086/514909

[47]

Hentzer, M., Teitzel, G. M., Balzer, G. J., et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology, 2001, 183: 5395–5401. https://doi.org/10.1128/JB.183.18.5395-5401.2001

[48]

Zhou, J. W., Hou, B., Liu, G. Y., et al. Attenuation of Pseudomonas aeruginosa biofilm by hordenine: a combinatorial study with aminoglycoside antibiotics. Applied Microbiology and Biotechnology, 2018, 102: 9745–9758. https://doi.org/10.1007/s00253-018-9315-8

[49]

Flemming, H. C., Wingender, J. The biofilm matrix. Nature Reviews Microbiology, 2010, 8: 623–633. https://doi.org/10.1038/nrmicro2415

[50]

Darouiche, R. O. Treatment of infections associated with surgical implants. New England Journal of Medicine, 2004, 350: 1422–1429. https://doi.org/10.1056/NEJMra035415

[51]

Liu, Y., Shi, L., Su, L., et al. Nanotechnology-based antimicrobials and delivery systems for biofilm- infection control. Chemical Society Reviews, 2019, 48: 428–446. https://doi.org/10.1039/c7cs00807d

[52]

Romero, R., Schaudinn, C., Kusanovic, J. P., et al. Detection of a microbial biofilm in intraamniotic infection. American Journal of Obstetrics and Gynecology, 2008, 198: 135.e1–135.e5. https://doi.org/10.1016/j.ajog.2007.11.026

[53]

Davies, D. Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2003, 2: 114–122. https://doi.org/10.1038/nrd1008

[54]
Ha, D. G., O'Toole, G. A. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiology Spectrum, 2015 , 3: MB-0003-2014. https://doi.org/10.1128/microbiolspec.MB-0003-2014
[55]

Skariyachan, S., Sridhar, V. S., Packirisamy, S., et al. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica, 2018, 63: 413–432. https://doi.org/10.1007/s12223-018-0585-4

[56]

Rumbaugh, K. P., Sauer, K. Biofilm dispersion. Nature Reviews Microbiology, 2020, 18: 571–586. https://doi.org/10.1038/s41579-020-0385-0

[57]

Li, Y. H., Tian, X. Quorum sensing and bacterial social interactions in biofilms. Sensors, 2012, 12: 2519–2538. https://doi.org/10.3390/s120302519

[58]
Zhou, J. W., Chen, T. T., Tan, X. J., et al. Can the quorum sensing inhibitor resveratrol function as an aminoglycoside antibiotic accelerant against Pseudomonas aeruginosa? International journal of antimicrobial agents, 2018 , 52:35–41. https://doi.org/10.1016/j.ijantimicag.2018.03.002
[59]

Zhou, J. W., Ruan, L. Y., Chen, H. J., et al. Inhibition of quorum sensing and virulence in Serratia marcescens by hordenine. Journal of Agricultural and Food Chemistry, 2019, 67: 784–795. https://doi.org/10.1021/acs.jafc.8b05922

[60]

Fong, J., Yuan, M., Jakobsen, T. H., et al. Disulfide bond-containing ajoene analogues as novel quorum sensing inhibitors of Pseudomonas aeruginosa. Journal of Medicinal Chemistry, 2017, 60: 215–227. https://doi.org/10.1021/acs.jmedchem.6b01025

[61]

Ouyang, J., Sun, F., Feng, W., et al. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. Journal of Applied Microbiology, 2016, 120: 966–974. https://doi.org/10.1111/jam.13073

[62]

Fernandes, S., Borges, A., Gomes, I. B., et al. Curcumin and 10-undecenoic acid as natural quorum sensing inhibitors of LuxS/AI-2 of Bacillus subtilis and LasI/LasR of Pseudomonas aeruginosa. Food Research International, 2023, 165: 112519. https://doi.org/10.1016/j.foodres.2023.112519

[63]

Zhang, S., Liu, N., Liang, W., et al. Quorum sensing-disrupting coumarin suppressing virulence phenotypes in Vibrio splendidus. Applied Microbiology Biotechnology, 2017, 101: 3371–3378. https://doi.org/10.1007/s00253-016-8009-3

[64]

Anju, V. T., Busi, S., Ranganathan, S., et al. Sesamin and sesamolin rescues Caenorhabditis elegans from Pseudomonas aeruginosa infection through the attenuation of quorum sensing regulated virulence factors. Microbial Pathogenesis, 2021, 155: 104912. https://doi.org/10.1016/j.micpath.2021.104912

[65]

Zhang, Y., Kong, J., Huang, F., et al. Hexanal as a QS inhibitor of extracellular enzyme activity of Erwinia carotovora and Pseudomonas fluorescens and its application in vegetables. Food Chemistry, 2018, 255: 1–7. https://doi.org/10.1016/j.foodchem.2018.02.038

[66]

Chatterjee, B., Aswathanarayan, J. B., Vittal, R. R. Application of geraniol–chitosan blend film with quorum sensing inhibitory activity as packaging materials for biofilm control in fresh fruit and vegetable. Journal of Packaging Technology and Research, 2022, 6: 101–114. https://doi.org/10.1007/s41783-022-00133-8

[67]

Manefield, M., de Nys, R., Naresh, K., et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology, 1999, 145: 283–291. https://doi.org/10.1099/13500872-145-2-283

[68]

Chen, J., Wang, B., Lu, Y., et al. Quorum sensing inhibitors from marine microorganisms and their synthetic derivatives. Marine Drugs, 2019, 17: 80. https://doi.org/10.3390/md17020080

[69]

Tang, J., Wang, W., Chu, W. Antimicrobial and anti-quorum sensing activities of phlorotannins from seaweed ( Hizikia fusiforme). Frontiers in Cellular and Infection Microbiology, 2020, 10: 586750. https://doi.org/10.3389/fcimb.2020.586750

[70]

Karnjana, K., Nobsathian, S., Soowannayan, C., et al. Purification and evaluation of N-benzyl cinnamamide from red seaweed Gracilaria fisheri as an Inhibitor of Vibrio harveyi AI-2 quorum sensing. Marine Drugs, 2020, 18: 20. https://doi.org/10.3390/md18020080

[71]

Sethupathy, S., Shanmuganathan, B., Kasi, P. D., et al. Alpha-bisabolol from brown macroalga Padina gymnospora mitigates biofilm formation and quorum sensing controlled virulence factor production in Serratia marcescens. Journal of Applied Phycology, 2016, 28: 1987–1996. https://doi.org/10.1007/s10811-015-0717-z

[72]

Park, J., Kaufmann, G. F., Bowen, J. P., et al. Solenopsin A, a venom alkaloid from the fire ant Solenopsis invicta, inhibits quorum-sensing signaling in Pseudomonas aeruginosa. Journal of Infectious Diseases, 2008, 198: 1198–1201. https://doi.org/10.1086/591916

[73]

Peters, L., Konig, G. M., Wright, A. D., et al. Secondary metabolites of Flustra foliacea and their influence on bacteria. Applied and Environmental Microbiology, 2003, 69: 3469–3475. https://doi.org/10.1128/AEM.69.6.3469-3475.2003

[74]

Skindersoe, M. E., Ettinger-Epstein, P., Rasmussen, T. B., et al. Quorum sensing antagonism from marine organisms. Marine Biotechnology, 2008, 10: 56–63. https://doi.org/10.1007/s10126-007-9036-y

[75]

Figueroa, M., Jarmusch, A. K., Raja, H. A., et al. Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. Journal of Natural Products, 2014, 77: 1351–1358. https://doi.org/10.1021/np5000704

[76]

Rasmussen, T. B., Skindersoe, M. E., Bjarnsholt, T., et al. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology, 2005, 151: 1325–1340. https://doi.org/10.1099/mic.0.27715-0

[77]

Zhang, M., Wang, M., Zhu, X., et al. Equisetin as potential quorum sensing inhibitor of Pseudomonas aeruginosa. Biotechnology Letters, 2018, 40: 865–870. https://doi.org/10.1007/s10529-018-2527-2

[78]

Du, Y., Sun, J., Gong, Q., et al. New alpha-pyridones with quorum-sensing inhibitory activity from diversity-enhanced extracts of a Streptomyces sp. derived from marine algae. Journal of Agricultural and Food Chemistry, 2018, 66: 1807–1812. https://doi.org/10.1021/acs.jafc.7b05330

[79]

Casillo, A., Papa, R., Ricciardelli, A., et al. Anti-biofilm activity of a long-chain fatty aldehyde from antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis biofilm. Frontiers in Cellular and Infection Microbiology, 2017, 7: 46. https://doi.org/10.3389/fcimb.2017.00046

[80]

Wang, M., Zhao, L., Wu, H., et al. Cladodionen is a potential quorum sensing inhibitor against Pseudomonas aeruginosa. Marine Drugs, 2020, 18: 205. https://doi.org/10.3390/md18040205

[81]

Sun, S., Dai, X., Sun, J., et al. A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity. Scientific Reports, 2016, 6: 39637. https://doi.org/10.1038/srep39637

[82]

Zhang, M., Zhao, J., Dai, X., et al. Extraction and analysis of chemical compositions of natural products and plants. Separations, 2023, 10: 598. https://doi.org/10.3390/genes1030413

[83]

Geske, G. D., O'Neill, J. C., Miller, D. M., et al. Modulation of bacterial quorum sensing withsynthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. Journal of the American Chemical Society, 2007, 129: 13613–13625. https://doi.org/10.1021/ja074135h

[84]

O'Loughlin, C. T., Miller, L. C., Siryaporn, A., et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 17981–17986. https://doi.org/10.1073/pnas.1316981110

[85]

Shin, D., Gorgulla, C., Boursier, M. E., et al. N-acyl homoserine lactone analog modulators of the Pseudomonas aeruginosa Rhll quorum sensing signal synthase. ACS Chemical Biology, 2019, 14: 2305–2314. https://doi.org/10.1021/acschembio.9b00671

[86]

Vetrivel, A., Natchimuthu, S., Subramanian, V., et al. High-throughput virtual screening for a new class of antagonist targeting LasR of Pseudomonas aeruginosa. ACS Omega, 2021, 6: 18314–18324. https://doi.org/10.1021/acsomega.1c02191

[87]

Nam, S., Ham, S. Y., Kwon, H., et al. Discovery and characterization of pure RhlR antagonists against Pseudomonas aeruginosa infections. Journal of Medicinal Chemistry, 2020, 63: 8388–8407. https://doi.org/10.1021/acs.jmedchem.0c00630

[88]

Ji, C., Sharma, I., Pratihar, D., et al. Designed small-molecule inhibitors of the anthranilyl-CoA synthetase PqsA block quinolone biosynthesis in Pseudomonas aeruginosa. ACS Chemical Biology, 2016, 11: 3061–3067. https://doi.org/10.1021/acschembio.6b00575

[89]

de Celis, M., Serrano-Aguirre, L., Belda, I., et al. Acylase enzymes disrupting quorum sensing alter the transcriptome and phenotype of Pseudomonas aeruginosa, and the composition of bacterial biofilms from wastewater treatment plants. Science of the Total Environment, 2021, 799: 149401. https://doi.org/10.1016/j.scitotenv.2021.149401

[90]

Chen, F., Gao, Y., Chen, X., et al. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. International Journal of Molecular Sciences, 2013, 14: 17477–17500. https://doi.org/10.3390/ijms140917477

[91]

Dong, W., Zhu, J., Guo, X., et al. Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618(T) and its application in quorum quenching on Pseudomonas aeruginosa PAO1. Scientific Reports, 2018, 8: 6013. https://doi.org/10.1038/s41598-018-24507-8

[92]

Takaya, A., Tabuchi, F., Tsuchiya, H., et al. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease. Journal of Bacteriology, 2008, 190: 4181–4188. https://doi.org/10.1128/JB.01873-07

[93]
Defoirdt, T., Boon, N., Bossier, P. Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathogens, 2010 , 6: e1000989. https://doi.org/10.1371/journal.ppat.1000989
[94]

Dong, Y. H., Wang, L. Y., Zhang, L. H. Quorum-quenching microbial infections: mechanisms and implications. Philosophical transactions of the Royal Society B: biological Sciences, 2007, 362: 1201–1211. https://doi.org/10.1098/rstb.2007.2045

[95]

Yin, L., Zhang, Y., Azi, F., et al. Inhibition of biofilm formation and quorum sensing by soy isoflavones in Pseudomonas aeruginosa. Food Control, 2022, 133: 108629. https://doi.org/10.1016/j.foodcont.2021.108629

[96]

Vadakkan, K., Ngangbam, A. K., Sathishkumar, K., et al. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. International Journal of Biological Macromolecules, 2024, 254: 127861. https://doi.org/10.1016/j.ijbiomac.2023.127861

[97]

Markus, V., Golberg, K., Terali, K., et al. Assessing the molecular targets and mode of action of furanone C-30 on Pseudomonas aeruginosa quorum sensing. Molecules, 2021, 26: 1620. https://doi.org/10.3390/molecules26061620

Food & Medicine Homology
Cite this article:
Zhou J-F, Liang Z-W, Yin K-Y, et al. Quorum sensing inhibitor: an effective strategy to attenuate the virulence and drug resistance of Pseudomonas aeruginosa. Food & Medicine Homology, 2025, https://doi.org/10.26599/FMH.2025.9420066
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return