Highlights
(1) Glucose-lowering activity of iridoids.
(2) Mechanisms of action of iridoids in alleviating diabetes mellitus and its complications.
(3) Some iridoids have the potential to be developed as clinical drugs.
(1) Glucose-lowering activity of iridoids.
(2) Mechanisms of action of iridoids in alleviating diabetes mellitus and its complications.
(3) Some iridoids have the potential to be developed as clinical drugs.
Iridoids derived from plants have demonstrated promising effects in regulating glycemic levels, which have captured the attention of researchers. Thus, an overview of iridoids with hypoglycemic activity, with a particular focus on their potential mechanisms of action in various cellular and animal models was summarized. It has been observed that iridoids primarily exert anti-inflammatory, antioxidant, and hypoglycemic effects through signaling pathways such as NF-κB, MAPK, AMPK, PI3K/AKT, NLRP3, ROS, NOX4, and AGEs/RAGE, thereby mitigating the symptoms of diabetes and its complications. By comprehensively summarizing and analyzing the molecular pathways through which iridoids alleviate diabetes and its complications, this review aims to establish a scientific foundation for the utilization of iridoids.
Wang, L., Meng, X. J., Zhou, H. H., et al. Iridoids and active ones in patrinia: A review. Heliyon, 2023, 9: e16518. https://doi.org/10.1016/j.heliyon.2023.e16518
Kong, Y. F., Yang, B., Hu, Y. L., et al. Research advance on structural modification and structure-activity relationship of iridoids. Natural Product Research and Development, 2021, 33: 1236–1250. https://doi.org/10.16333/j.1001-6880.2021.7.019
Jaafar, A., Zulkipli, M. A., Hatta, F. H. M., et al. Therapeutic potentials of iridoids derived from Rubiaceae against in vitro and in vivo inflammation: A scoping review. Saudi Pharmaceutical Journal, 2024, 32: e101876. https://doi.org/10.1016/j.jsps.2023.101876
Scicchitano, S., Vecchio, E., Battaglia, A. M., et al. The double-edged sword of oleuropein in Ovarian cancer cells: From antioxidant functions to cytotoxic effects. International Journal of Molecular Sciences, 2023, 24: e842. https://doi.org/10.3390/ijms24010842
Liu, J. X., Song, C. M., Nie, C. Z. P., et al. A novel regulatory mechanism of geniposide for improving glucose homeostasis mediated by circulating RBP4. Phytomedicine, 2022, 95: e153862. https://doi.org/10.1016/j.phymed.2021.153862
Liu, X. M., Hu, Y. T., Zhang, X., et al. Valtrate, an iridoid compound in Valeriana, elicits anti-glioblastoma activity through inhibition of the PDGFRA/MEK/ERK signaling pathway. Journal of Translational Medicine, 2023, 21: e147. https://doi.org/10.1186/s12967-023-03984-0
Li, N., Li, L., Wu, H. M., et al. Antioxidative property and molecular mechanisms underlying geniposide-mediated therapeutic effects in diabetes mellitus and cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2019, 2019: e7480512. https://doi.org/10.1155/2019/7480512
Bhattamisra, S. K., Koh, H. M., Lim, S. Y., et al. Molecular and biochemical pathways of catalpol in alleviating diabetes mellitus and its complications. Biomolecules, 2021, 11: e323. https://doi.org/10.3390/biom11020323
Cheng, Y. C., Chiu, Y. M., Dai, Z. K., et al. Loganin ameliorates painful diabetic neuropathy by modulating oxidative stress, inflammation and insulin sensitivity in streptozotocin-nicotinamide-induced diabetic rats. Cells, 2021, 10: e2688. https://doi.org/10.3390/cells10102688
Zheng, S. J., Huang, K. L., Tong, T. Efficacy and mechanisms of oleuropein in mitigating diabetes and diabetes complication. Journal of Agricultural and Food Chemistry, 2021, 69: 6145–6155. https://doi.org/10.1021/acs.jafc.1c01404
Zaccardi, F., Webb, D. R., Yates, T., et al. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgraduate Medical Journal, 2016, 92: 63–69. https://doi.org/10.1136/postgradmedj-2015-133281
He, L. Y., Yang, F. Q., Tang, P., et al. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomedicine & Pharmacotherapy, 2022, 151: e113091. https://doi.org/10.1016/j.biopha.2022.113091
Everett, B. M., Donath, M. Y., Pradhan, A. D., et al. Anti-inflammatory therapy with Canakinumab for the prevention and management of diabetes. Journal of the American College of Cardiology, 2018, 71: 2392–2401. https://doi.org/10.1016/j.jacc.2018.03.002
Rehman, K., Akash, M. S. H. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked. Journal of Biomedical Science, 2016, 23: e87. https://doi.org/10.1186/s12929-016-0303-y
Lontchi, Y. E., Sobngwi, E., Matsha, T. E., et al. Diabetes mellitus and inflammation. Current Diabetes Reports, 2013, 13: 435–444. https://doi.org/10.1007/s11892-013-0375-y
Yu, H., Lin, L. B., Zhang, Z. Q., et al. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduction and Targeted Therapy, 2020, 5: e209. https://doi.org/10.1038/s41392-020-00312-6
Arthur, J. S. C., Ley, S. C. Mitogen-activated protein kinases in innate immunity. Nature Reviews Immunology, 2013, 13: 679–692. https://doi.org/10.1038/nri3495
Hsu, M. L., Huang, W. C., Zhou, Y. R., et al. Oleuropein protects human retinal pigment epithelium cells from IL-1β-induced inflammation by blocking MAPK/NF-κB signaling pathways. Inflammation, 2022, 45: 297–307. https://doi.org/10.1007/s10753-021-01546-4
Xu, L., Li, D. D., Zhu, Y. Q., et al. Swertiamarin supplementation prevents obesity-related chronic inflammation and insulin resistance in mice fed a high-fat diet. Adipocyte, 2021, 10: 160–173. https://doi.org/10.1080/21623945.2021.1906510
Wu, Q., Gai, S. K., Zhang, H. J. Asperulosidic acid, a bioactive iridoid, alleviates placental oxidative stress and inflammatory responses in gestational diabetes mellitus by suppressing NF-κB and MAPK signaling pathways. Pharmacology, 2022, 107: 197–205. https://doi.org/10.1159/000521080
Cui, X. R., Yu, Y., Yu, J., et al. Iridoid glycoside cornuside alleviates the symptom of gestational diabetes mellitus by suppressing inflammation and regulating beta cell function. Gynecologic and Obstetric Investigation, 2023, 89: 59–68. https://doi.org/10.1159/000534623
Niu, D., Chen, X., Wang, T., et al. Protective effects of iridoid glycoside from Corni Fructus on type 2 diabetes with nonalcoholic fatty liver in mice. Biomed Research International, 2021, 2021: e3642463. https://doi.org/10.1155/2021/3642463
Ma, B., Zhu, Z. M., Zhang, J., et al. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Journal of Functional Foods, 2020, 64: e103702. https://doi.org/10.1016/j.jff.2019.103702
Zhou, J., Xu, G., Ma, S., et al. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways. Biochemical and Biophysical Research Communications, 2015, 467: 853–858. https://doi.org/10.1016/j.bbrc.2015.10.054
Chen, J., Yang, Y. W., Lv, Z. Y., et al. Study on the inhibitive effect of catalpol on diabetic nephropathy. Life Sciences, 2020, 257: e118120. https://doi.org/10.1016/j.lfs.2020.118120
Xiao, H. M., Sun, X. H., Liu, R. B., et al. Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacological Research, 2020, 151: e104559. https://doi.org/10.1016/j.phrs.2019.104559
Huang, Y., Xu, W., Zhou, R. B. NLRP3 inflammasome activation and cell death. Cellular & Molecular Immunology, 2021, 18: 2114–2127. https://doi.org/10.1038/s41423-021-00740-6
Komg, X. R., Zhao, Y. Y., Wang, X. Y., et al. Loganin reduces diabetic kidney injury by inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis. Chemico-Biological Interactions, 2023, 382: e110640. https://doi.org/10.1016/j.cbi.2023.110640
Cheng, Y. C., Chu, L. W., Chen, J. Y., et al. Loganin attenuates high glucose-induced Schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation. Cells, 2020, 9: e1948. https://doi.org/10.3390/cells9091948
Bao, X. W., Li, J. Q., Ren, C. X., et al. Aucubin ameliorates liver fibrosis and hepatic stellate cells activation in diabetic mice via inhibiting ER stress-mediated IRE1α/TXNIP/NLRP3 inflammasome through NOX4/ROS pathway. Chemico-Biological Interactions, 2022, 365: e110074. https://doi.org/10.1016/j.cbi.2022.110074
Wang, B., Yao, J., Yao, X., et al. Swertiamarin alleviates diabetic peripheral neuropathy in rats by suppressing NOXS/ ROS/NLRP3 signal pathway. Journal of Southern Medical University, 2021, 41: 937–941. https://doi.org/10.12122/j.issn.1673-4254.2021.06.18
Zou, X. Z., Zhang, Y. W., Pan, Z. F., et al. Gentiopicroside alleviates cardiac inflammation and fibrosis in T2DM rats through targeting Smad3 phosphorylation. Phytomedicine, 2022, 106: e154389. https://doi.org/10.1016/j.phymed.2022.154389
Fang, C. J., Rong, X. J., Jiang, W. W., et al. Geniposide promotes wound healing of skin ulcers in diabetic rats through PI3K/Akt pathway. Heliyon, 2023, 9: e21331. https://doi.org/10.1016/j.heliyon.2023.e21331
Chen, X. Y., Jiang, W. W., Liu, Y. L., et al. Anti-inflammatory action of geniposide promotes wound healing in diabetic rats. Pharmaceutical Biology, 2022, 60: 294–299. https://doi.org/10.1080/13880209.2022.2030760
Singh, A., Kukreti, R., Saso, L., et al. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules, 2022, 27: e950. https://doi.org/10.3390/molecules27030950
Rani, V., Deep, G., Singh, R. K., et al. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 2016, 148: 183–193. https://doi.org/10.1016/j.lfs.2016.02.002
Newsholme, P., Cruzat, V. F., Keane, K. N., et al. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochemical Journal, 2016, 473: 4527–4550. https://doi.org/10.1042/BCJ20160503C
Chen, Y. P., Jiao, N., Jiang, M., et al. Loganin alleviates testicular damage and germ cell apoptosis induced by AGEs upon diabetes mellitus by suppressing the RAGE/p38MAPK/NF-κB pathway. Journal of Cellular and Molecular Medicine, 2020, 24: 6083–6095. https://doi.org/10.1111/jcmm.15198
Chen, Y. P., Wu, Y. H., Gan, X. Y., et al. Iridoid glycoside from Cornus officinalis ameliorated diabetes mellitus-induced testicular damage in male rats: Involvement of suppression of the AGEs/RAGE/p38 MAPK signaling pathway. Journal of Ethnopharmacology, 2016, 194: 850–860. https://doi.org/10.1016/j.jep.2016.10.079
Jiao, N., Chen, Y. P., Zhu, Y. H., et al. Protective effects of catalpol on diabetes mellitus-induced male reproductive damage via suppression of the AGEs/RAGE/Nox4 signaling pathway. Life Sciences, 2020, 256: e116736. https://doi.org/10.1016/j.lfs.2019.116736
Yan, J. T., Wang, C. Y., Jin, Y., et al. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacological Research, 2018, 130: 466–480. https://doi.org/10.1016/j.phrs.2017.12.026
Zhang, Y. K., Wang, C. Y., Lu, J. W., et al. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging-Us, 2020, 12: 2049–2069. https://doi.org/10.18632/aging.102721
Dusabimana, T., Park, E. J., Je, J., et al. Geniposide improves diabetic nephropathy by enhancing ULK1-mediated autophagy and reducing oxidative stress through AMPK activation. International Journal of Molecular Sciences, 2021, 22: e1651. https://doi.org/10.3390/ijms22041651
Yang, Y., Li, J., Wei, C., et al. Amelioration of nonalcoholic fatty liver disease by swertiamarin in fructose-fed mice. Phytomedicine, 2019, 59: e152782. https://doi.org/10.1016/j.phymed.2018.12.005
Huang, X. J., Liu, G. H., Guo, J., et al. The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences, 2018, 14: 1483–1496. https://doi.org/10.7150/ijbs.27173
Entezari, M., Hashemi, D., Taheriazam, A., et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine & Pharmacotherapy, 2022, 146: e112563. https://doi.org/10.1016/j.biopha.2021.112563
Sarma, P., Bharadwaj, S., Swargiary, D., et al. Iridoid glycoside isolated from Wendlandia glabrata and the role of its enriched fraction in regulating AMPK/PEPCK/G6Pase signaling pathway of hepatic gluconeogenesis. New Journal of Chemistry, 2022, 46: 13167–13177. https://doi.org/10.1039/D1NJ05856H
Yap, K. H., Yee, G. S., Candasamy, M., et al. Catalpol ameliorates insulin sensitivity and mitochondrial respiration in skeletal muscle of type-2 diabetic mice through insulin signaling pathway and AMPK/SIRT1/PGC-1α/PPAR-γ activation. Biomolecules, 2020, 10: e1360. https://doi.org/10.3390/biom10101360
Liu, J., Zhang, H. R , Hou, Y. B., et al. Global gene expression analysis in liver of db/db mice treated with catalpol. Chinese Journal of Natural Medicines, 2018, 16: 590–598. https://doi.org/10.1016/S1875-5364(18)30096-7
Xu, D. Q., Huang, X. F., Hassan, H. M., et al. Hypoglycaemic effect of catalpol in a mouse model of high-fat diet-induced prediabetes. Applied Physiology Nutrition and Metabolism, 2020, 45: 1127–1137. https://doi.org/10.1139/apnm-2020-0075
Kang, J. F., Guo, C., Thome, R., et al. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: possible involvement of the PI3K-Akt/PKB signaling pathway. Rsc Advances, 2018, 8: 30539–30549. https://doi.org/10.1039/C8RA06045B
Patel, T. P., Rawal, K., Soni, S., et al. Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis. Biomedicine & Pharmacotherapy, 2016, 83: 785–791. https://doi.org/10.1016/j.biopha.2016.07.028
Liu, Z. H., Meng, L. J., Wang, M. K., et al. New iridoids from Patrinia scabiosaefolia and their hypoglycemic effects by activating PI3K/Akt signaling pathway. Fitoterapia, 2023, 165: e105423. https://doi.org/10.1016/j.fitote.2022.105423
Sinha, K., Kumar, S., Rawat, B., et al. Kutkin, iridoid glycosides enriched fraction of Picrorrhiza kurroa promotes insulin sensitivity and enhances glucose uptake by activating PI3K/Akt signaling in 3T3-L1 adipocytes. Phytomedicine : International Journal of Phytotherapy and PhytopharmaCology, 2022, 103: 154204. https://doi.org/10.1016/j.phymed.2022.154204
Liu, Z. H., Xu, L. T., Xu, X. Q., et al. Effects and mechanisms of iridoid glycosides from Patrinia scabiosaefolia on improving insulin resistance in 3T3-L1 adipocytes. Food and Chemical Toxicology, 2019, 134: e110806. https://doi.org/10.1016/j.fct.2019.110806
Choi, E. M., Suh, K. S., Yun, S. J., et al. Oleuropein attenuates the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-perturbing effects on pancreatic β-cells. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2021, 56: 752–761. https://doi.org/10.1080/10934529.2021.1923312
Jiang, H. W., Ma, Y. J., Yan, J. Q., et al. Geniposide promotes autophagy to inhibit insulin resistance in HepG2 cells via P62/NF-κB/GLUT-4. Molecular Medicine Reports, 2017, 16: 7237–7244. https://doi.org/10.3892/mmr.2017.7503
Wei, J. J., Zhao, Y. T., Liang, H. H., et al. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharmaceutica Sinica B, 2022, 12: 1–17. https://doi.org/10.1016/j.apsb.2021.08.026
Kim, S., Kang, S. W., Joo, J., et al. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death & Disease, 2021, 12: e382. https://doi.org/10.1038/s41419-021-03452-x
Liu, Y., Dai, W., Ye, S. D. The olive constituent oleuropein exerts nephritic protective effects on diabetic nephropathy in db/db mice. Archives of Physiology and Biochemistry, 2019, 128: 455–462. https://doi.org/10.1080/13813455.2019.1691603
Mclean, B. A., Wong, C. K., Campbell, J. E., et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocrine Reviews, 2021, 42: 101–132. https://doi.org/10.1210/endrev/bnab024
Mueller, T. D., Finan, B., Bloom, S. R., et al. Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 2019, 30: 72–130. https://doi.org/10.1016/j.molmet.2019.09.010
Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metabolism, 2018, 27: 740–756. https://doi.org/10.1016/j.cmet.2018.03.001
Del, B. M., Nocella, C., Loffreddo, L., et al. Oleuropein-enriched chocolate by extra virgin olive oil blunts hyperglycaemia in diabetic patients: Results from a one-time 2-hour post-prandial cross over study. Clinical Nutrition, 2020, 39: 2187–2191. https://doi.org/10.1016/j.clnu.2019.09.006
Suh, H. W., Lee, K. B., Kim, K. S., et al. A bitter herbal medicine Gentiana scabra root extract stimulates glucagon-like peptide-1 secretion and regulates blood glucose in db/db mouse. Journal of Ethnopharmacology, 2015, 172: 219–226. https://doi.org/10.1016/j.jep.2015.06.042
Lin, L. C., Lee, L. C., Huang, C., et al. Effects of boschnaloside from Boschniakia rossica on dysglycemia and islet dysfunction in severely diabetic mice through modulating the action of glucagon-like peptide-1. Phytomedicine, 2019, 62: e152946. https://doi.org/10.1016/j.phymed.2019.152946
Mishra, S. P., Wang, B., Jain, S., et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut. Gut, 2023, 72: 1848–1865. https://doi.org/10.1136/gutjnl-2022-327365
Yang, G., Wei, J. L., Liu, P. Y., et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism-Clinical and Experimental, 2021, 117: e154712. https://doi.org/10.1016/j.metabol.2021.154712
Cunningham, A. L., Stephens, J. W., Harris, D. A. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathogens, 2021, 13: e50. https://doi.org/10.1186/s13099-021-00446-0
Zheng, S. J., Wang, Y. A., Fang, J. J., et al. Oleuropein ameliorates advanced stage of type 2 diabetes in db/db mice by regulating gut microbiota. Nutrients, 2021, 13: e2131. https://doi.org/10.3390/nu13072131
Nakamura, A., Yokoyama, Y., Tanaka, K., et al. Asperuloside improves obesity and type 2 diabetes through modulation of gut microbiota and metabolic signaling. Iscience, 2020, 23: e101522. https://doi.org/10.1016/j.isci.2020.101522
Zhu, Y. H., Du, Q., Jiao, N., et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sciences, 2021, 267: e118881. https://doi.org/10.1016/j.lfs.2020.118881
Zengin, G., El-Raey, M., El-Kashak, W., et al. Sweroside: An iridoid glycoside of potential neuroprotective, antidiabetic, and antioxidant activities supported by molecular docking. Amino Acids, 2023, 55: 1765–1774. https://doi.org/10.1007/s00726-023-03262-9
Vajravijayan, S., Nandhagopal, N., Anantha, K. D. A., et al. Isolation and characterization of an iridoid, arbortristoside-C from Nyctanthes arbor tristis Linn., a potential drug candidate for diabetes targeting α-glucosidase. Journal of Biomolecular Structure & Dynamics, 2022, 40: 337–347. https://doi.org/10.1080/07391102.2020.1813201
Ye, X. S., He, J., Xu, J. K., et al. Undescribed morroniside-like secoiridoid diglycosides with α-glucosidase inhibitory activity from Corni Fructus. Phytochemistry, 2020, 171: e112232. https://doi.org/10.1016/j.phytochem.2019.112232
He, K., Song, S. H., Zou, Z. Y., et al. The hypoglycemic and synergistic effect of loganin, morroniside, and ursolic acid isolated from the fruits of Cornus officinalis. Phytotherapy Research, 2016, 302: 283–291. https://doi.org/10.1002/ptr.5529
Shu, A. M., Du, Q., Chen, J., et al. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway. Chemico-Biological Interactions, 2021, 348: e109625. https://doi.org/10.1016/j.cbi.2021.109625
Sun, W. X., Gao, Y. Y., Cao, Y., et al. Catalpol prevents glomerular angiogenesis induced by advanced glycation end products via inhibiting galectin-3. Current Medical Science, 2023, 43: 668–678. https://doi.org/10.1007/s11596-023-2750-5
Yang, S. S., Deng, H. C., Zhang, Q. Z., et al. Amelioration of diabetic mouse nephropathy by catalpol correlates with down-regulation of Grb10 expression and activation of insulin-like growth factor 1/insulin-like growth factor 1 receptor signaling. Plos One, 2016, 11: e0151857. https://doi.org/10.1371/journal.pone.0151857
Dong, Z., Chen, C. X. Effect of catalpol on diabetic nephropathy in rats. Phytomedicine, 2013, 20: 1023–1029. https://doi.org/10.1016/j.phymed.2013.04.007
Chen, Y., Liu, Q. P., Shen, Z. F., et al. Catalpol ameliorates podocyte injury by stabilizing cytoskeleton and enhancing autophagy in diabetic nephropathy. Frontiers in Pharmacology, 2019, 10: e1477. https://doi.org/10.3389/fphar.2019.01477
Zou, G. L., Zhong, W. L., Wu, F., et al. Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis. Biochimie, 2019, 165: 90–99. https://doi.org/10.1016/j.biochi.2019.05.005
Lin, C. M., Wang, B. W., Fang, W. J., et al. Catalpol ameliorates neointimal hyperplasia in diabetic rats. Planta Medica, 2019, 85: 406–411. https://doi.org/10.1055/a-0818-3689
Xu, D. Q., Wang, L., Jiang, Z. Z., et al. A new hypoglycemic mechanism of catalpol revealed by enhancing MyoD/MyoG-mediated myogenesis. Life Sciences, 2018, 209: 313–323. https://doi.org/10.1016/j.lfs.2018.08.028
Zhou, H. C., Liu, J., Ren, L. Y., et al. Relationship with spatial memory in diabetic rats and protein kinase Cγ, caveolin-1 in the hippocampus and neuroprotective effect of catalpol. Chinese Medical Journal, 2014, 127: 916–923. https://doi.org/10.3760/cma.j.issn.0366-6999.20132137
Jiang, W. L., Zhang, S. P., Hou, J., et al. Effect of loganin on experimental diabetic nephropathy. Phytomedicine, 2012, 19: 217–222. https://doi.org/10.1016/j.phymed.2011.08.064
Sun, Y., Zhu, Y., Liu, X. Z., et al. Morroniside attenuates high glucose-induced BMSC dysfunction by regulating the Glo1/AGE/RAGE axis. Cell Proliferation, 2020, 53: e12866. https://doi.org/10.1111/cpr.12866
Lee, D. H., Park, S. H., Huh, Y. H., et al. Iridoids of Valeriana fauriei contribute to alleviating hepatic steatosis in obese mice by lipophagy. Biomedicine & Pharmacotherapy, 2020, 125: e109950. https://doi.org/10.1016/j.biopha.2020.109950
Benlarbi, M., Jemai, H., Hajri, K., et al. Neuroprotective effects of oleuropein on retina photoreceptors cells primary culture and olive leaf extract and oleuropein inhibitory effects on aldose reductase in a diabetic model: Meriones shawi. Archives of Physiology and Biochemistry, 2022, 128: 593–600. https://doi.org/10.1080/13813455.2019.1708119
Lv, X., Dai, G. Y., Lv, G. H., et al. Synergistic interaction of effective parts in Rehmanniae Radix and Corpus officinalis ameliorates renal injury in C57BL/KsJ-db/db diabetic mice: Involvement of suppression of AGEs/RAGE/SphK1 signaling pathway. Journal of Ethnopharmacology, 2016, 185: 110–119. https://doi.org/10.1016/j.jep.2016.03.017
Zhang, C. Y., Parton, L. E., Ye, C. P., et al. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced β cell dysfunction in isolated pancreatic islets. Cell Metabolism, 2006, 3: 417–427. https://doi.org/10.1016/j.cmet.2006.04.010
Hwang, B. F., Sarasmita, M. A., Li, M. C., et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet, 2023, 402: 203–234. https://doi.org/10.1016/S0140-6736(23)02044-5
Wei, W., Zeng, Q. X., Wang, Y., et al. Discovery and identification of EIF2AK2 as a direct key target of berberine for anti-inflammatory effects. Acta Pharm Sin B, 2023, 13: 2138–2151. https://doi.org/10.1016/j.apsb.2022.12.009
Qiao, L., Ma, J., Zhang, Z. H., et al. Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circulation Research, 2021, 129: 1141–1157. https://doi.org/10.1161/CIRCRESAHA.121.318908