PDF (1.8 MB)
Collect
Submit Manuscript
Review Article | Open Access | Online First

Iridoid terpenoids: a class of promising compounds to regulate blood glucose

Wen-Jing Guo1Yu Zhang1,3Hassan Elsayed2Chang-Qin Li1,3()Xiao-Yu Chen1,3()
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
Medicinal and Aromatic Plants Research Department Horticulture Research Institute, Agricultural Research Center, Giza 21641, Egypt
College of Agriculture, Henan University, Kaifeng 475004, China
Show Author Information

Highlights

(1) Glucose-lowering activity of iridoids.

(2) Mechanisms of action of iridoids in alleviating diabetes mellitus and its complications.

(3) Some iridoids have the potential to be developed as clinical drugs.

Graphical Abstract

View original image Download original image
Iridoids alleviate inflammation and oxidative stress, improve insulin sensitivity, promote glucose metabolism, and reduce blood glucose mainly through inflammation, oxidative stress, insulin signal transduction, glucose metabolism, incretin and other related signaling pathways.

Abstract

Iridoids derived from plants have demonstrated promising effects in regulating glycemic levels, which have captured the attention of researchers. Thus, an overview of iridoids with hypoglycemic activity, with a particular focus on their potential mechanisms of action in various cellular and animal models was summarized. It has been observed that iridoids primarily exert anti-inflammatory, antioxidant, and hypoglycemic effects through signaling pathways such as NF-κB, MAPK, AMPK, PI3K/AKT, NLRP3, ROS, NOX4, and AGEs/RAGE, thereby mitigating the symptoms of diabetes and its complications. By comprehensively summarizing and analyzing the molecular pathways through which iridoids alleviate diabetes and its complications, this review aims to establish a scientific foundation for the utilization of iridoids.

References

[1]

Wang, L., Meng, X. J., Zhou, H. H., et al. Iridoids and active ones in patrinia: A review. Heliyon, 2023, 9: e16518. https://doi.org/10.1016/j.heliyon.2023.e16518

[2]

Kong, Y. F., Yang, B., Hu, Y. L., et al. Research advance on structural modification and structure-activity relationship of iridoids. Natural Product Research and Development, 2021, 33: 1236–1250. https://doi.org/10.16333/j.1001-6880.2021.7.019

[3]

Jaafar, A., Zulkipli, M. A., Hatta, F. H. M., et al. Therapeutic potentials of iridoids derived from Rubiaceae against in vitro and in vivo inflammation: A scoping review. Saudi Pharmaceutical Journal, 2024, 32: e101876. https://doi.org/10.1016/j.jsps.2023.101876

[4]

Scicchitano, S., Vecchio, E., Battaglia, A. M., et al. The double-edged sword of oleuropein in Ovarian cancer cells: From antioxidant functions to cytotoxic effects. International Journal of Molecular Sciences, 2023, 24: e842. https://doi.org/10.3390/ijms24010842

[5]

Liu, J. X., Song, C. M., Nie, C. Z. P., et al. A novel regulatory mechanism of geniposide for improving glucose homeostasis mediated by circulating RBP4. Phytomedicine, 2022, 95: e153862. https://doi.org/10.1016/j.phymed.2021.153862

[6]

Liu, X. M., Hu, Y. T., Zhang, X., et al. Valtrate, an iridoid compound in Valeriana, elicits anti-glioblastoma activity through inhibition of the PDGFRA/MEK/ERK signaling pathway. Journal of Translational Medicine, 2023, 21: e147. https://doi.org/10.1186/s12967-023-03984-0

[7]

Li, N., Li, L., Wu, H. M., et al. Antioxidative property and molecular mechanisms underlying geniposide-mediated therapeutic effects in diabetes mellitus and cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2019, 2019: e7480512. https://doi.org/10.1155/2019/7480512

[8]

Bhattamisra, S. K., Koh, H. M., Lim, S. Y., et al. Molecular and biochemical pathways of catalpol in alleviating diabetes mellitus and its complications. Biomolecules, 2021, 11: e323. https://doi.org/10.3390/biom11020323

[9]

Cheng, Y. C., Chiu, Y. M., Dai, Z. K., et al. Loganin ameliorates painful diabetic neuropathy by modulating oxidative stress, inflammation and insulin sensitivity in streptozotocin-nicotinamide-induced diabetic rats. Cells, 2021, 10: e2688. https://doi.org/10.3390/cells10102688

[10]

Zheng, S. J., Huang, K. L., Tong, T. Efficacy and mechanisms of oleuropein in mitigating diabetes and diabetes complication. Journal of Agricultural and Food Chemistry, 2021, 69: 6145–6155. https://doi.org/10.1021/acs.jafc.1c01404

[11]

Zaccardi, F., Webb, D. R., Yates, T., et al. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgraduate Medical Journal, 2016, 92: 63–69. https://doi.org/10.1136/postgradmedj-2015-133281

[12]

He, L. Y., Yang, F. Q., Tang, P., et al. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomedicine & Pharmacotherapy, 2022, 151: e113091. https://doi.org/10.1016/j.biopha.2022.113091

[13]

Everett, B. M., Donath, M. Y., Pradhan, A. D., et al. Anti-inflammatory therapy with Canakinumab for the prevention and management of diabetes. Journal of the American College of Cardiology, 2018, 71: 2392–2401. https://doi.org/10.1016/j.jacc.2018.03.002

[14]

Rehman, K., Akash, M. S. H. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked. Journal of Biomedical Science, 2016, 23: e87. https://doi.org/10.1186/s12929-016-0303-y

[15]

Lontchi, Y. E., Sobngwi, E., Matsha, T. E., et al. Diabetes mellitus and inflammation. Current Diabetes Reports, 2013, 13: 435–444. https://doi.org/10.1007/s11892-013-0375-y

[16]

Yu, H., Lin, L. B., Zhang, Z. Q., et al. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduction and Targeted Therapy, 2020, 5: e209. https://doi.org/10.1038/s41392-020-00312-6

[17]

Arthur, J. S. C., Ley, S. C. Mitogen-activated protein kinases in innate immunity. Nature Reviews Immunology, 2013, 13: 679–692. https://doi.org/10.1038/nri3495

[18]

Hsu, M. L., Huang, W. C., Zhou, Y. R., et al. Oleuropein protects human retinal pigment epithelium cells from IL-1β-induced inflammation by blocking MAPK/NF-κB signaling pathways. Inflammation, 2022, 45: 297–307. https://doi.org/10.1007/s10753-021-01546-4

[19]

Xu, L., Li, D. D., Zhu, Y. Q., et al. Swertiamarin supplementation prevents obesity-related chronic inflammation and insulin resistance in mice fed a high-fat diet. Adipocyte, 2021, 10: 160–173. https://doi.org/10.1080/21623945.2021.1906510

[20]

Wu, Q., Gai, S. K., Zhang, H. J. Asperulosidic acid, a bioactive iridoid, alleviates placental oxidative stress and inflammatory responses in gestational diabetes mellitus by suppressing NF-κB and MAPK signaling pathways. Pharmacology, 2022, 107: 197–205. https://doi.org/10.1159/000521080

[21]

Cui, X. R., Yu, Y., Yu, J., et al. Iridoid glycoside cornuside alleviates the symptom of gestational diabetes mellitus by suppressing inflammation and regulating beta cell function. Gynecologic and Obstetric Investigation, 2023, 89: 59–68. https://doi.org/10.1159/000534623

[22]

Niu, D., Chen, X., Wang, T., et al. Protective effects of iridoid glycoside from Corni Fructus on type 2 diabetes with nonalcoholic fatty liver in mice. Biomed Research International, 2021, 2021: e3642463. https://doi.org/10.1155/2021/3642463

[23]

Ma, B., Zhu, Z. M., Zhang, J., et al. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Journal of Functional Foods, 2020, 64: e103702. https://doi.org/10.1016/j.jff.2019.103702

[24]

Zhou, J., Xu, G., Ma, S., et al. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways. Biochemical and Biophysical Research Communications, 2015, 467: 853–858. https://doi.org/10.1016/j.bbrc.2015.10.054

[25]

Chen, J., Yang, Y. W., Lv, Z. Y., et al. Study on the inhibitive effect of catalpol on diabetic nephropathy. Life Sciences, 2020, 257: e118120. https://doi.org/10.1016/j.lfs.2020.118120

[26]

Xiao, H. M., Sun, X. H., Liu, R. B., et al. Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacological Research, 2020, 151: e104559. https://doi.org/10.1016/j.phrs.2019.104559

[27]

Huang, Y., Xu, W., Zhou, R. B. NLRP3 inflammasome activation and cell death. Cellular & Molecular Immunology, 2021, 18: 2114–2127. https://doi.org/10.1038/s41423-021-00740-6

[28]

Komg, X. R., Zhao, Y. Y., Wang, X. Y., et al. Loganin reduces diabetic kidney injury by inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis. Chemico-Biological Interactions, 2023, 382: e110640. https://doi.org/10.1016/j.cbi.2023.110640

[29]

Cheng, Y. C., Chu, L. W., Chen, J. Y., et al. Loganin attenuates high glucose-induced Schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation. Cells, 2020, 9: e1948. https://doi.org/10.3390/cells9091948

[30]

Bao, X. W., Li, J. Q., Ren, C. X., et al. Aucubin ameliorates liver fibrosis and hepatic stellate cells activation in diabetic mice via inhibiting ER stress-mediated IRE1α/TXNIP/NLRP3 inflammasome through NOX4/ROS pathway. Chemico-Biological Interactions, 2022, 365: e110074. https://doi.org/10.1016/j.cbi.2022.110074

[31]

Wang, B., Yao, J., Yao, X., et al. Swertiamarin alleviates diabetic peripheral neuropathy in rats by suppressing NOXS/ ROS/NLRP3 signal pathway. Journal of Southern Medical University, 2021, 41: 937–941. https://doi.org/10.12122/j.issn.1673-4254.2021.06.18

[32]

Zou, X. Z., Zhang, Y. W., Pan, Z. F., et al. Gentiopicroside alleviates cardiac inflammation and fibrosis in T2DM rats through targeting Smad3 phosphorylation. Phytomedicine, 2022, 106: e154389. https://doi.org/10.1016/j.phymed.2022.154389

[33]

Fang, C. J., Rong, X. J., Jiang, W. W., et al. Geniposide promotes wound healing of skin ulcers in diabetic rats through PI3K/Akt pathway. Heliyon, 2023, 9: e21331. https://doi.org/10.1016/j.heliyon.2023.e21331

[34]

Chen, X. Y., Jiang, W. W., Liu, Y. L., et al. Anti-inflammatory action of geniposide promotes wound healing in diabetic rats. Pharmaceutical Biology, 2022, 60: 294–299. https://doi.org/10.1080/13880209.2022.2030760

[35]

Singh, A., Kukreti, R., Saso, L., et al. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules, 2022, 27: e950. https://doi.org/10.3390/molecules27030950

[36]

Rani, V., Deep, G., Singh, R. K., et al. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 2016, 148: 183–193. https://doi.org/10.1016/j.lfs.2016.02.002

[37]

Newsholme, P., Cruzat, V. F., Keane, K. N., et al. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochemical Journal, 2016, 473: 4527–4550. https://doi.org/10.1042/BCJ20160503C

[38]

Chen, Y. P., Jiao, N., Jiang, M., et al. Loganin alleviates testicular damage and germ cell apoptosis induced by AGEs upon diabetes mellitus by suppressing the RAGE/p38MAPK/NF-κB pathway. Journal of Cellular and Molecular Medicine, 2020, 24: 6083–6095. https://doi.org/10.1111/jcmm.15198

[39]

Chen, Y. P., Wu, Y. H., Gan, X. Y., et al. Iridoid glycoside from Cornus officinalis ameliorated diabetes mellitus-induced testicular damage in male rats: Involvement of suppression of the AGEs/RAGE/p38 MAPK signaling pathway. Journal of Ethnopharmacology, 2016, 194: 850–860. https://doi.org/10.1016/j.jep.2016.10.079

[40]

Jiao, N., Chen, Y. P., Zhu, Y. H., et al. Protective effects of catalpol on diabetes mellitus-induced male reproductive damage via suppression of the AGEs/RAGE/Nox4 signaling pathway. Life Sciences, 2020, 256: e116736. https://doi.org/10.1016/j.lfs.2019.116736

[41]

Yan, J. T., Wang, C. Y., Jin, Y., et al. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacological Research, 2018, 130: 466–480. https://doi.org/10.1016/j.phrs.2017.12.026

[42]

Zhang, Y. K., Wang, C. Y., Lu, J. W., et al. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging-Us, 2020, 12: 2049–2069. https://doi.org/10.18632/aging.102721

[43]

Dusabimana, T., Park, E. J., Je, J., et al. Geniposide improves diabetic nephropathy by enhancing ULK1-mediated autophagy and reducing oxidative stress through AMPK activation. International Journal of Molecular Sciences, 2021, 22: e1651. https://doi.org/10.3390/ijms22041651

[44]

Yang, Y., Li, J., Wei, C., et al. Amelioration of nonalcoholic fatty liver disease by swertiamarin in fructose-fed mice. Phytomedicine, 2019, 59: e152782. https://doi.org/10.1016/j.phymed.2018.12.005

[45]

Huang, X. J., Liu, G. H., Guo, J., et al. The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences, 2018, 14: 1483–1496. https://doi.org/10.7150/ijbs.27173

[46]

Entezari, M., Hashemi, D., Taheriazam, A., et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine & Pharmacotherapy, 2022, 146: e112563. https://doi.org/10.1016/j.biopha.2021.112563

[47]

Sarma, P., Bharadwaj, S., Swargiary, D., et al. Iridoid glycoside isolated from Wendlandia glabrata and the role of its enriched fraction in regulating AMPK/PEPCK/G6Pase signaling pathway of hepatic gluconeogenesis. New Journal of Chemistry, 2022, 46: 13167–13177. https://doi.org/10.1039/D1NJ05856H

[48]

Yap, K. H., Yee, G. S., Candasamy, M., et al. Catalpol ameliorates insulin sensitivity and mitochondrial respiration in skeletal muscle of type-2 diabetic mice through insulin signaling pathway and AMPK/SIRT1/PGC-1α/PPAR-γ activation. Biomolecules, 2020, 10: e1360. https://doi.org/10.3390/biom10101360

[49]

Liu, J., Zhang, H. R , Hou, Y. B., et al. Global gene expression analysis in liver of db/db mice treated with catalpol. Chinese Journal of Natural Medicines, 2018, 16: 590–598. https://doi.org/10.1016/S1875-5364(18)30096-7

[50]

Xu, D. Q., Huang, X. F., Hassan, H. M., et al. Hypoglycaemic effect of catalpol in a mouse model of high-fat diet-induced prediabetes. Applied Physiology Nutrition and Metabolism, 2020, 45: 1127–1137. https://doi.org/10.1139/apnm-2020-0075

[51]

Kang, J. F., Guo, C., Thome, R., et al. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: possible involvement of the PI3K-Akt/PKB signaling pathway. Rsc Advances, 2018, 8: 30539–30549. https://doi.org/10.1039/C8RA06045B

[52]

Patel, T. P., Rawal, K., Soni, S., et al. Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis. Biomedicine & Pharmacotherapy, 2016, 83: 785–791. https://doi.org/10.1016/j.biopha.2016.07.028

[53]

Liu, Z. H., Meng, L. J., Wang, M. K., et al. New iridoids from Patrinia scabiosaefolia and their hypoglycemic effects by activating PI3K/Akt signaling pathway. Fitoterapia, 2023, 165: e105423. https://doi.org/10.1016/j.fitote.2022.105423

[54]

Sinha, K., Kumar, S., Rawat, B., et al. Kutkin, iridoid glycosides enriched fraction of Picrorrhiza kurroa promotes insulin sensitivity and enhances glucose uptake by activating PI3K/Akt signaling in 3T3-L1 adipocytes. Phytomedicine : International Journal of Phytotherapy and PhytopharmaCology, 2022, 103: 154204. https://doi.org/10.1016/j.phymed.2022.154204

[55]

Liu, Z. H., Xu, L. T., Xu, X. Q., et al. Effects and mechanisms of iridoid glycosides from Patrinia scabiosaefolia on improving insulin resistance in 3T3-L1 adipocytes. Food and Chemical Toxicology, 2019, 134: e110806. https://doi.org/10.1016/j.fct.2019.110806

[56]

Choi, E. M., Suh, K. S., Yun, S. J., et al. Oleuropein attenuates the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-perturbing effects on pancreatic β-cells. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2021, 56: 752–761. https://doi.org/10.1080/10934529.2021.1923312

[57]

Jiang, H. W., Ma, Y. J., Yan, J. Q., et al. Geniposide promotes autophagy to inhibit insulin resistance in HepG2 cells via P62/NF-κB/GLUT-4. Molecular Medicine Reports, 2017, 16: 7237–7244. https://doi.org/10.3892/mmr.2017.7503

[58]

Wei, J. J., Zhao, Y. T., Liang, H. H., et al. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharmaceutica Sinica B, 2022, 12: 1–17. https://doi.org/10.1016/j.apsb.2021.08.026

[59]

Kim, S., Kang, S. W., Joo, J., et al. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death & Disease, 2021, 12: e382. https://doi.org/10.1038/s41419-021-03452-x

[60]

Liu, Y., Dai, W., Ye, S. D. The olive constituent oleuropein exerts nephritic protective effects on diabetic nephropathy in db/db mice. Archives of Physiology and Biochemistry, 2019, 128: 455–462. https://doi.org/10.1080/13813455.2019.1691603

[61]

Mclean, B. A., Wong, C. K., Campbell, J. E., et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocrine Reviews, 2021, 42: 101–132. https://doi.org/10.1210/endrev/bnab024

[62]

Mueller, T. D., Finan, B., Bloom, S. R., et al. Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 2019, 30: 72–130. https://doi.org/10.1016/j.molmet.2019.09.010

[63]

Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metabolism, 2018, 27: 740–756. https://doi.org/10.1016/j.cmet.2018.03.001

[64]

Del, B. M., Nocella, C., Loffreddo, L., et al. Oleuropein-enriched chocolate by extra virgin olive oil blunts hyperglycaemia in diabetic patients: Results from a one-time 2-hour post-prandial cross over study. Clinical Nutrition, 2020, 39: 2187–2191. https://doi.org/10.1016/j.clnu.2019.09.006

[65]

Suh, H. W., Lee, K. B., Kim, K. S., et al. A bitter herbal medicine Gentiana scabra root extract stimulates glucagon-like peptide-1 secretion and regulates blood glucose in db/db mouse. Journal of Ethnopharmacology, 2015, 172: 219–226. https://doi.org/10.1016/j.jep.2015.06.042

[66]

Lin, L. C., Lee, L. C., Huang, C., et al. Effects of boschnaloside from Boschniakia rossica on dysglycemia and islet dysfunction in severely diabetic mice through modulating the action of glucagon-like peptide-1. Phytomedicine, 2019, 62: e152946. https://doi.org/10.1016/j.phymed.2019.152946

[67]

Mishra, S. P., Wang, B., Jain, S., et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut. Gut, 2023, 72: 1848–1865. https://doi.org/10.1136/gutjnl-2022-327365

[68]

Yang, G., Wei, J. L., Liu, P. Y., et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism-Clinical and Experimental, 2021, 117: e154712. https://doi.org/10.1016/j.metabol.2021.154712

[69]

Cunningham, A. L., Stephens, J. W., Harris, D. A. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathogens, 2021, 13: e50. https://doi.org/10.1186/s13099-021-00446-0

[70]

Zheng, S. J., Wang, Y. A., Fang, J. J., et al. Oleuropein ameliorates advanced stage of type 2 diabetes in db/db mice by regulating gut microbiota. Nutrients, 2021, 13: e2131. https://doi.org/10.3390/nu13072131

[71]

Nakamura, A., Yokoyama, Y., Tanaka, K., et al. Asperuloside improves obesity and type 2 diabetes through modulation of gut microbiota and metabolic signaling. Iscience, 2020, 23: e101522. https://doi.org/10.1016/j.isci.2020.101522

[72]
Niu, D., An, S. J., Chen, X., et al. Corni Fructus as a natural resource can treat type 2 diabetes by regulating gut microbiota. American Journal of Chinese Medicine, 2020 , 48: 1385–1407. https://doi.org/10.1142/S0192415X20500688
[73]

Zhu, Y. H., Du, Q., Jiao, N., et al. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life Sciences, 2021, 267: e118881. https://doi.org/10.1016/j.lfs.2020.118881

[74]

Zengin, G., El-Raey, M., El-Kashak, W., et al. Sweroside: An iridoid glycoside of potential neuroprotective, antidiabetic, and antioxidant activities supported by molecular docking. Amino Acids, 2023, 55: 1765–1774. https://doi.org/10.1007/s00726-023-03262-9

[75]

Vajravijayan, S., Nandhagopal, N., Anantha, K. D. A., et al. Isolation and characterization of an iridoid, arbortristoside-C from Nyctanthes arbor tristis Linn., a potential drug candidate for diabetes targeting α-glucosidase. Journal of Biomolecular Structure & Dynamics, 2022, 40: 337–347. https://doi.org/10.1080/07391102.2020.1813201

[76]

Ye, X. S., He, J., Xu, J. K., et al. Undescribed morroniside-like secoiridoid diglycosides with α-glucosidase inhibitory activity from Corni Fructus. Phytochemistry, 2020, 171: e112232. https://doi.org/10.1016/j.phytochem.2019.112232

[77]

He, K., Song, S. H., Zou, Z. Y., et al. The hypoglycemic and synergistic effect of loganin, morroniside, and ursolic acid isolated from the fruits of Cornus officinalis. Phytotherapy Research, 2016, 302: 283–291. https://doi.org/10.1002/ptr.5529

[78]
Yang, X. L., Wang, Y. J., Tang, X. Q., et al. Corni Fructus extracts ameliorate streptozotocin-induced diabetes in mice via regulating AMPK/ACC/CPT-1 signaling pathway. Journal of Functional Foods, 2023 , 107: e105661. https://doi.org/10.1016/j.jff.2023.105661
[79]

Shu, A. M., Du, Q., Chen, J., et al. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway. Chemico-Biological Interactions, 2021, 348: e109625. https://doi.org/10.1016/j.cbi.2021.109625

[80]

Sun, W. X., Gao, Y. Y., Cao, Y., et al. Catalpol prevents glomerular angiogenesis induced by advanced glycation end products via inhibiting galectin-3. Current Medical Science, 2023, 43: 668–678. https://doi.org/10.1007/s11596-023-2750-5

[81]

Yang, S. S., Deng, H. C., Zhang, Q. Z., et al. Amelioration of diabetic mouse nephropathy by catalpol correlates with down-regulation of Grb10 expression and activation of insulin-like growth factor 1/insulin-like growth factor 1 receptor signaling. Plos One, 2016, 11: e0151857. https://doi.org/10.1371/journal.pone.0151857

[82]

Dong, Z., Chen, C. X. Effect of catalpol on diabetic nephropathy in rats. Phytomedicine, 2013, 20: 1023–1029. https://doi.org/10.1016/j.phymed.2013.04.007

[83]

Chen, Y., Liu, Q. P., Shen, Z. F., et al. Catalpol ameliorates podocyte injury by stabilizing cytoskeleton and enhancing autophagy in diabetic nephropathy. Frontiers in Pharmacology, 2019, 10: e1477. https://doi.org/10.3389/fphar.2019.01477

[84]

Zou, G. L., Zhong, W. L., Wu, F., et al. Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis. Biochimie, 2019, 165: 90–99. https://doi.org/10.1016/j.biochi.2019.05.005

[85]

Lin, C. M., Wang, B. W., Fang, W. J., et al. Catalpol ameliorates neointimal hyperplasia in diabetic rats. Planta Medica, 2019, 85: 406–411. https://doi.org/10.1055/a-0818-3689

[86]

Xu, D. Q., Wang, L., Jiang, Z. Z., et al. A new hypoglycemic mechanism of catalpol revealed by enhancing MyoD/MyoG-mediated myogenesis. Life Sciences, 2018, 209: 313–323. https://doi.org/10.1016/j.lfs.2018.08.028

[87]

Zhou, H. C., Liu, J., Ren, L. Y., et al. Relationship with spatial memory in diabetic rats and protein kinase Cγ, caveolin-1 in the hippocampus and neuroprotective effect of catalpol. Chinese Medical Journal, 2014, 127: 916–923. https://doi.org/10.3760/cma.j.issn.0366-6999.20132137

[88]

Jiang, W. L., Zhang, S. P., Hou, J., et al. Effect of loganin on experimental diabetic nephropathy. Phytomedicine, 2012, 19: 217–222. https://doi.org/10.1016/j.phymed.2011.08.064

[89]

Sun, Y., Zhu, Y., Liu, X. Z., et al. Morroniside attenuates high glucose-induced BMSC dysfunction by regulating the Glo1/AGE/RAGE axis. Cell Proliferation, 2020, 53: e12866. https://doi.org/10.1111/cpr.12866

[90]

Lee, D. H., Park, S. H., Huh, Y. H., et al. Iridoids of Valeriana fauriei contribute to alleviating hepatic steatosis in obese mice by lipophagy. Biomedicine & Pharmacotherapy, 2020, 125: e109950. https://doi.org/10.1016/j.biopha.2020.109950

[91]

Benlarbi, M., Jemai, H., Hajri, K., et al. Neuroprotective effects of oleuropein on retina photoreceptors cells primary culture and olive leaf extract and oleuropein inhibitory effects on aldose reductase in a diabetic model: Meriones shawi. Archives of Physiology and Biochemistry, 2022, 128: 593–600. https://doi.org/10.1080/13813455.2019.1708119

[92]

Lv, X., Dai, G. Y., Lv, G. H., et al. Synergistic interaction of effective parts in Rehmanniae Radix and Corpus officinalis ameliorates renal injury in C57BL/KsJ-db/db diabetic mice: Involvement of suppression of AGEs/RAGE/SphK1 signaling pathway. Journal of Ethnopharmacology, 2016, 185: 110–119. https://doi.org/10.1016/j.jep.2016.03.017

[93]

Zhang, C. Y., Parton, L. E., Ye, C. P., et al. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced β cell dysfunction in isolated pancreatic islets. Cell Metabolism, 2006, 3: 417–427. https://doi.org/10.1016/j.cmet.2006.04.010

[94]

Hwang, B. F., Sarasmita, M. A., Li, M. C., et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet, 2023, 402: 203–234. https://doi.org/10.1016/S0140-6736(23)02044-5

[95]

Wei, W., Zeng, Q. X., Wang, Y., et al. Discovery and identification of EIF2AK2 as a direct key target of berberine for anti-inflammatory effects. Acta Pharm Sin B, 2023, 13: 2138–2151. https://doi.org/10.1016/j.apsb.2022.12.009

[96]

Qiao, L., Ma, J., Zhang, Z. H., et al. Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circulation Research, 2021, 129: 1141–1157. https://doi.org/10.1161/CIRCRESAHA.121.318908

Food & Medicine Homology
Cite this article:
Guo W-J, Zhang Y, Elsayed H, et al. Iridoid terpenoids: a class of promising compounds to regulate blood glucose. Food & Medicine Homology, 2025, https://doi.org/10.26599/FMH.2025.9420074
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return