PDF (1.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Tables (1)
Table 1
Review Article | Open Access | Online First

Pharmacological Properties of Atractylodes macrocephala Koidz.: A Comprehensive Review

Jiang-Bao Wang2,Lu Wang3,Song-Hong Yang1()
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense 32004, Spain

These authors contribute equally to this work.

Show Author Information

Highlights

(1) AMK, as a traditional qi-invigorating medicine, has extremely high value of both medicine and food, and its pharmacological research is very important.

(2) In this review, botanical characteristics, phytochemistry, pharmacology, pharmacokinetics of AMK were comprehensively analyzed and summarized.

(3) By consolidating current research, this review seeks to offer a thorough reference for the practical application, development and utilization of AMK as a food with homology of medicine and food.

Graphical Abstract

View original image Download original image
Major active components, pharmacological activities and traditional records of AMK. Major active component of the figure contain Triterpenoids Sesquiterpenoids, Coumarins, Phenylpropanoids and Polyacetylenes. Pharmacological activities contain Neuroprotection, Anti-Inflammation and Gastrointestinal Function.

Abstract

Atractylodes macrocephala Koidz. (AMK), commonly known as Baizhu, is a medicinal and edible plant. Researchers have identified over 77 metabolites in AMK. Many studies have demonstrated the diverse pharmacological activities of AMK, including enhancing gastrointestinal function; modulating immune responses; regulating hormonal secretion; and exerting antitumor, anti-inflammatory, antiaging, antioxidant, antiosteoporotic, antibacterial, and neuroprotective effects.

References

[1]
Editorial Committee of the Flora of China, Chinese Academy of Sciences. Flora of China. Beijing: Science Press, 1993.
[2]

Liu, B., Kou, Z., Chen, B. Effects and mechanisms of traditional Chinese medicines on functional dyspepsia: A review. Chinese herbal medicines, 2023, 15: 516–525. https:// https://doi.org/10.1016/j.chmed.2023.06.001

[3]

Liu, X., Wang, S., Li, J., et al. Regulatory effect of traditional Chinese medicines on signaling pathways of process from chronic atrophic gastritis to gastric cancer. Chinese herbal medicines, 2021, 14: 5–19. https:// https://doi.org/10.1016/j.chmed.2021.10.008

[4]

Yang, Y., Wang, Y., Zhao, L., et al. Chinese herbal medicines for treating ulcerative colitis via regulating gut microbiota-intestinal immunity axis. Chinese herbal medicines, 2023, 15: 181–200. https://doi.org/10.1016/j.chmed.2023.03.003

[5]

Li, W. L. Contents and significance of secondary development of large varieties of traditional Chinese medicines. Chinese herbal medicines, 2023, 15: 155–156. https://doi.org/10.1016/j.chmed.2023.03.004

[6]

Chen, J. S. Essential role of medicine and food homology in health and wellness. Chinese herbal medicines, 2023, 15: 347–348. https://doi.org/10.1016/j.chmed.2023.05.001

[7]
Yao, R. Y., He, C. N., Xiao, P. G. ‘Food and medicine continuum’ in the East and West: Old tradition and current regulation. Chinese herbal medicines, 2023 , 15: 6–14. https://doi.org/10.1016/j.chmed.2022.12.002
[8]
Heinrich, M., Yao, R. Y., Xiao P.G. ‘Food and medicine continuum’ - Why we should promote cross-cultural communication between the global East and West. Chinese herbal medicines, 2022 , 14: 3–4. https://doi.org/10.1016/j.chmed.2021.12.002
[9]

He, C. N., Zhao, X. N., Yao, R. Y., et al. Food-medicine can promote cross-culture communication between East and West. Chinese herbal medicines, 2023, 15: 3–5. https://doi.org/10.1016/j.chmed.2022.12.003

[10]

Jiang, H., Shi, J., Li, Y. Screening for compounds with aromatase inhibiting activities from Atractylodes macrocephala Koidz. Molecules, 2011, 16: 3146–3151. https://doi.org/10.3390/molecules16043146

[11]

Chen, Z. L. The acetylenes from Atractylodes macrocephala. Planta Medica, 1987, 53: 493–494. https://doi.org/10.1055/s-2006-962780

[12]

Huang, B. S., Sun, J. S., Chen, Z. L. Isolation and identification of Atractylenolide IV from Atractylodes macrocephala Koidz. Journal of Integrative Plant Biology, 1992, 34: 614–617.

[13]

Hoang, L. S., Tran, M. H., Lee, J. S., et al. Inflammatory inhibitory activity of sesquiterpenoids from Atractylodes macrocephala rhizomes. Chemical and Pharmaceutical Bulletin, 2016, 64: 507–511. https://doi.org/10.1248/cpb.c15-00805

[14]

Zhang, N., Liu, C., Sun, T. M., et al. Two new compounds from Atractylodes macrocephala with neuroprotective activity. Journal of Asian natural products research, 2017, 19: 35–41. https://doi.org/10.1080/10286020.2016.1247351

[15]

Li, Y., Liu, J., Yang, X. W. Four new eudesmane-type sesquiterpenoid lactones from atractylenolide II by biotransformation of rat hepatic microsomes. Journal of Asian natural products research, 2013, 15: 344–356. https://doi.org/10.1080/10286020.2013.764867

[16]

Li, Y., Yang, X. W. New eudesmane-type sesquiterpenoids from the processed rhizomes of Atractylodes macrocephala. Journal of Asian natural products research, 2014, 16: 123–128. https://doi.org/10.1080/10286020.2013.840295

[17]

Chen, Z. L., Cao, W. Y., Zhou, G. X., et al. A sesquiterpene lactam from Atractylodes macrocephala. Phytochemistry, 1997, 45: 765–767. https://doi.org/10.1016/S0031-9422(97)00036-8

[18]

Wang, S. Y., Ding, L. F., Su, J., et al. Atractylmacrols A-E, sesquiterpenes fromthe rhizomes of Atractylodes macrocephala. Phytochemistry Letters, 2018, 23: 127–131. https://doi.org/10.1016/j.phytol.2017.11.021

[19]

Lin, Y. C., Jin, T., Yuan, Z. M., et al. A Unique Bisesquiterpenoid from the Chinese Herb Medicine Atractylodes macrocephala Koidz. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1996, 02: 75–76.

[20]

Li, Y. Z., Dai, M., Peng, D. Y. New bisesquiterpenoid lactone from the wild rhizome of Atractylodes macrocephala Koidz grown in Qimen. Natural product research, 2017, 31: 2381–2386. https://doi.org/10.1080/14786419.2017.1309531

[21]

Chen, J. M., Yu, M. Q., Shen, Y. Z., et al. The Comparison of the chemical composition from natural Atractylodes macrocephala Koidz and its tissue culture. Journal of Integrative Plant Biology, 1991, 02: 164–167.

[22]

Li, Y., Yang, X. W. Chemical Constituents of Rhizomes of Atractylodes macrocephala. Modern Chinese Medicine, 2018, 20: 382–386. https://doi.org/10.13313/j.issn.1673-4890.20171029001

[23]

Sun, X., Cui, X. B., Wen, H. M., et al. Influence of sulfur fumigation on the chemical profiles of Atractylodes macrocephala Koidz. evaluated by UFLC-QTOF-MS combined with multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2017, 141: 19–31. https://doi.org/10.1016/j.jpba.2017.03.003

[24]

Li, X. L., Yang, L., Chen, L., et al. Variation of Atractylenolide I, II, III in Atractylodis Macrocephalae Rhizoma During Stir-frying with Bran Process. Chinese Journal of Experimental Traditional Medical Formulae, 2015, 21: 35–38. https://doi.org/10.13422/j.cnki.syfjx.2015070035

[25]

Chen, R. L., He, L., Fei, S. Q., et al. A comparative study of Atractylenolide content of different processed products of Rhizoma Atractylodis Macrocephalae. Lishizhen Medicine and Materia Medica Research, 2016, 27: 2911–2914.

[26]

Li, W., Wen, H. M., Cui, X. B., et al. Process mechanism of Atractylodes macrocephala and conversion of sesquiterpenes. China Journal of Chinese Materia Medica, 2006, 19: 1600–1603

[27]

Wu, X. Y., Zhang, A. R., Yang, D. Y., et al. Analysis of chemical constituents of Atractylodis Macrocephalae Rhizoma and its different processed products based on UPLC/Q-TOF-MS /MS. Lishizhen Medicine and Materia Medica Research, 2023, 34: 2395–2403.

[28]

Yao, C. M., Yang, X. W. Bioactivity-guided isolation of polyacetylenes with inhibitory activity against NO production in LPS-activated RAW264.7 macrophages from the rhizomes of Atractylodes macrocephala. Journal of ethnopharmacology, 2014, 151: 791–799. https://doi.org/10.1016/j.jep.2013.10.005

[29]

Dong, H. Y., He, L. C., Huang, M., et al. Anti-inflammatory components isolated from Atractylodes macrocephala Koidz. Natural Product Research, 2008, 22: 1418–1427. https://doi.org/10.1080/14786410801931629

[30]

Zou, H., Yang, C., Yi, M. L., et al. Chemical constituents of Atractylodis Macrocephalae Rhizoma. Chinese Journal of Experimental Traditional Medical Formulae, 2016, 22: 43–48. https://doi.org/10.13422/j.cnki.syfjx.2016170043

[31]

Peng, W., Han, T., Liu, Q. C., et al. Chemical constituents from aerial part of Atractylodes macrocephala. China Journal of Chinese Materia Medica, 2011, 36: 578–581.

[32]

Wang, Y. Y., Liu, J. W., Sima, Z. H., et al. Isolation and characterization of active components in Atractylodes macrocephala polysaccharides regulating IEC-6 cellmigration. Chemical Journal of Chinese Universities, 2015, 36: 299–305.

[33]

Wang, R. J., Zhou, G. S., Wang, M. Y., et al. The metabolism of polysaccharide from Atractylodes macrocephala Koidz and its effect on intestinal microflora. Evidence‐Based Complementary and Alternative Medicine, 2014, 1: 926381. https://doi.org/10.1155/2014/926381

[34]

Wu, L. Q., Zhang, J., Sun, R. G., et al. Isolation and structure characterization of polysaccharide from Atractylodes macrocephala Koidz. Chemical Journal of Chinese Universities, 2011, 32: 2812–2816.

[35]

Chi, Y. M., Li, W., Wen, H. M., et al. Isolation on separation, purification and chemical structure of polysaccharide from Atractylodes macrocephala. Journal of Chinese Medicinal Materials, 2001, 09: 647–648.

[36]

Liang, Z. H., Guo, Z. X., Zhang, L. P. Structure aspects of water soluble polysaccharide isolated from Atractylodes macrocephala Koidz. Journal of Molecular Science, 2007, 03: 185–188.

[37]

Ji, G. Q., Chen, R. Q., Zheng, J. X. Macrophage activation by polysaccharides from Atractylodes macrocephala Koidz through the nuclear factor-κB pathway. Pharmaceutical Biology, 2015, 53: 512–517. https://doi.org/10.3109/13880209.2014.929152

[38]

Son, Y. O., Kook, S. H., Lee, J. C. Glycoproteins and polysaccharides are the main class of active constituents required for lymphocyte stimulation and antigen-specific immune response induction by traditional medicinal herbal plants. Journal of medicinal food, 2017, 20: 1011–1021. https://doi.org/10.1089/jmf.2017.3943

[39]

Mihaylova, S., Schweighöfer, H., Hackstein, H., et al. Effects of anti-inflammatory vagus nerve stimulation in endotoxemic rats on blood and spleen lymphocyte subsets. Inflammation Research, 2014, 63: 683–690. https://doi.org/10.1007/s00011-014-0741-5

[40]

Revathikumar, P., Estelius, J., Karmakar, U., et al. Microsomal prostaglandin Esynthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One, 2018, 13: e0193210. https://doi.org/10.1371/journal.pone.0193210

[41]

Amin, A., Hossen, M., Fu, X. Q, et al. Inhibition of the Akt/NF-κB pathway isinvolved in the anti-gastritis effects of an ethanolic extract of the rhizome of Atractylodes macrocephala. Journal of Ethnopharmacology, 2022, 293: 115251. https://doi.org/10.1016/j.jep.2022.115251

[42]

Wang, C. H., Duan, H. J., He, L. C. Inhibitory effect of atractylenolide I on angiogenesis in chronic inflammation in vivo and in vitro. European Journal of Pharmacology, 2009, 612: 143–152. https://doi.org/10.1016/j.ejphar.2009.04.001

[43]

Yang, S. H., Zhang, J. L., Yan, Y. Q., et al. Network pharmacology-based strategy to investigate the pharmacologic mechanisms of Atractylodes macrocephala Koidz. for the treatment of chronic gastritis. Frontiers in Pharmacology, 2020, 10: 1629. https://doi.org/10.3389/fphar.2019.01629

[44]

Li, C. Q., He, L. C., Dong, H. Y., et al. Screening for the anti-inflammatory activity of fractions and compounds from Atractylodes macrocephala Koidz. Journal of Ethnopharmacology, 2007, 114: 212–217. https://doi.org/10.1016/j.jep.2007.08.002

[45]

Ji, G. Q., Chen, R. Q., Zheng, J. X. Atractylenolide I inhibits lipopolysaccharide-induced inflammatory responses via mitogen-activated protein kinase pathways in RAW264.7 cells. Immunopharmacology and Immunotoxicology, 2014, 36: 420–425. https://doi.org/10.3109/08923973.2014.968256

[46]

Zhao, Y., Cao, H., Ma, L., et al. Toward improved human health: Ferroptosis‐related “Hyperfoods” as the nutritional supplement in COVID‐19. eFood, 2024, 5: e183. https://doi.org/10.1002/efd2.183

[47]

Baldissera. M. D., Souza. C. F., Bottari. N. B., et al. Purinergic signalling displays an anti-inflammatory profile in the spleen of fish experimentally infected with Aeromonas caviae: Modulation of the immune response. Journal of fish diseases, 2018, 41: 683–687. https://doi.org/10.1111/jfd.12773

[48]

Ji, Y. F., Wang, R. J., Peng, Y., et al. Purification, preliminary characterization, and immunological activity of polysaccharides from crude drugs of Sijunzi formula. Evidence‐Based Complementary and Alternative Medicine, 2017, 1: 2170258. https://doi.org/10.1155/2017/2170258

[49]

Xie, F., Li, Y. T., Su, F., et al. Adjuvant effect of Atractylodis macrocephalae Koidz. polysaccharides on the immune response to foot-and-mouth disease vaccine. Carbohydrate polymers, 2012, 87: 1713–1719. https://doi.org/10.1016/j.carbpol.2011.09.080

[50]
Xie, F., Sakwiwatkul, K., Zhang, C. R., et al. Atractylodis macrocephalae Koidz. polysaccharides enhance both serum IgG response and gut mucosal immunity. Carbohydrate polymers, 2013 , 91: 68–73. https://doi.org/10.1016/j.carbpol.2012.07.083
[51]

Li, R. L., Sakwiwatkul, K., Li, Y. T., et al. Enhancement of the immune responses to vaccination against foot-and-mouth disease in mice by oral administration ofan extract made from Rhizoma Atractylodis Macrocephalae (RAM). Vaccine, 2009, 27: 2094–2098. https://doi.org/10.1016/j.vaccine.2009.02.002

[52]

Li, L. L., Yin, F. G., Zhang, B., et al. Dietary supplementation with Atractylodes Macrophala Koidz polysaccharides ameliorate metabolic status and improve immune function in early-weaned pigs. Livestock Science, 2011, 142: 33–41. https://doi.org/10.1016/j.livsci.2011.06.013

[53]

Xu, C. L., Zhao, Y. F., Shang, X. Y., et al. The effects of supplementing diets with Atractylodes macrocephala Koidz rhizomes on growth performance and immunefunction in piglets. Journal of Animal and Feed Sciences, 2012, 21: 302–312. https://doi.org/10.22358/jafs/66078/2012

[54]

Xu, D. N., Li, B. X., Cao, N., et al. The protective effects of polysaccharide of Atractylodes macrocephala Koidz (PAMK) on the chicken spleen under heat stressvia antagonizing apoptosis and restoring the immune function. Oncotarget, 2017, 8: 70394–70405. https://doi.org/10.18632/oncotarget.19709

[55]

Wei, L., Chen, B., Ye, R., et al. Treatment of complications due to peritonealdialysis for chronic renal failure with traditional Chinese medicine. Journal of Traditional Chinese Medicine, 1999, 19: 3–9.

[56]

Feng, Y. Y., Ji, H. Y., Dong, X. D., et al. An alcohol-soluble polysaccharide from Atractylodes macrocephala Koidz induces apoptosis of Eca-109 cells. Carbohydrate Polymers, 2019, 226: 115136. https://doi.org/10.1016/j.carbpol.2019.115136

[57]

Liu, Y., Jia, Z. W., Dong, L., et al. A randomized pilot study of atractylenolide I on gastric cancer cachexia patients. Evidence‐Based Complementary and Alternative Medicine, 2008, 5: 337–344. https://doi.org/10.1093/ecam/nem031

[58]

Liu, Y., Ye, F., Qiu, G. Q., et al. Effects of lactone I from Atractylodes macrocephala Koidz on cytokines and proteolysis-inducing factors in cachectic cancer patients. Academic Journal of the First Medical College of PLA, 2005, 25: 1308–1311.

[59]

Kou, N., Cho, H., Kim, H. E., et al. Anti-cancer effect of Atractylodes macrocephala extract by double induction of apoptotic and autophagic cell death in head and neck cancer cells. Bangladesh Journal of Pharmacology, 2017, 12: 140–146. https://doi.org/10.3329/bjp.v12i2.31238

[60]

Huang, H. L., Chen, C. C., Yeh, C. Y., et al. Reactive oxygen species mediation of Baizhu-induced apoptosis in human leukemia cells. Journal of Ethnopharmacology, 2005, 97: 21–29. https://doi.org/10.1016/j.jep.2004.09.058

[61]

Huang, H. L., Lin, T. W., Huang, Y. L., et al. Induction of apoptosis and differentiation by atractylenolide-1 isolated from Atractylodes macrocephala in human leukemia cells. Bioorganic & Medicinal Chemistry Letters, 2016, 26: 1905–1909. https://doi.org/10.1016/j.bmcl.2016.03.021

[62]
Li, X. J., Liu, F., Li, Z., et al. Atractylodes macrocephala polysaccharides induces mitochondrial-mediated apoptosis in glioma C6 cells. International journal of biological macromolecules, 2014 , 66: 108–112. https://doi.org/10.1016/j.ijbiomac.2014.02.019
[63]

Wang, T., Long, F. Y., Zhang, X. Q., et al. Chemopreventive effects of atractylenolide II on mammary tumorigenesis via activating Nrf2-ARE pathway. Oncotarget, 2017, 8: 77500. https://doi.org/10.18632/oncotarget.20546

[64]

Kim, C. K., Kim, M., Oh, S. D., et al. Effects of Atractylodes macrocephala Koidzumi rhizome on 3T3-L1 adipogenesis and an animal model of obesity. Journal of Ethnopharmacology, 2011, 137: 396–402. https://doi.org/10.1016/j.jep.2011.05.036

[65]

Song, M. Y., Kang, S. Y., Oh, T. W., et al. The roots of Atractylodes macrocephala Koidzumi enhanced glucose and lipid metabolism in C2C12 myotubes via mitochondrial regulation. Evidence‐Based Complementary and Alternative Medicine, 2015, 1: 643654. https://doi.org/10.1155/2015/643654

[66]
Song, M. Y., Lim, S. K., Wang, J. H., et al. The root of Atractylodes macrocephala koidzumi prevents obesity and glucose intolerance and increases energy metabolism in mice. International Journal of Molecular Sciences, 2018 , 19: 278. https://doi.org/10.3390/ijms19010278
[67]
Song, H. P., Li, R. L., Chen, X., et al. Atractylodes macrocephala Koidz promotes intestinal epithelial restitution via the polyamine-Voltage-gated K+ channel pathway. Journal of Ethnopharmacology, 2014 , 152: 163–172. https://doi.org/10.1016/j.jep.2013.12.049
[68]
Song, H. P., Li, R. L., Zhou, C., et al. Atractylodes macrocephala Koidz stimulates intestinal epithelial cell migration through a polyamine dependent mechanism. Journal of Ethnopharmacology, 2015 , 159:23–35. https://doi.org/10.1016/j.jep.2014.10.059
[69]
Lu, F. Study on the Substances and Mechanisms of Charred Atractylodis Macrocephalae Rhizoma with Anti-Gastric Ulcer Effects Based on Nanotechnology. Beijing University of Chinese Medicine, 2020.
[70]

Zhang, M., Shan, K., Song, S. X., et al. Serine, glutamate, and proline in a high-fat diet exacerbated metabolite reduction-induced memory and cognitive decline. Food Frontiers, 2023, 4: 883–901. https://doi.org/10.1002/fft2.239

[71]

Hennig, B., Deng, P. Oxidative stress, Healthful nutrition as a prevention and intervention paradigm to decrease the vulnerability to environmental toxicity or stressors and associated inflammatory disease risks. Food Frontiers, 2020, 1: 13–14. https://doi.org/10.1002/fft2.6

[72]

Kim, G. H., Kim, J. E., Rhie, S. J., et al. The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental neurobiology, 2015, 24: 325–340. https://doi.org/10.5607/en.2015.24.4.325

[73]

Gao, Q., Ji, Z. H., Yang, Y., et al. Neuroprotective effect of Rhizoma Atractylodis macrocephalae against excitotoxicity-induced apoptosis in cultured cerebral cortical neurons. Phytotherapy Research, 2012, 26: 557–561. https://doi.org/10.1002/ptr.3595

[74]
Zhu, L., Ning, N., Li, Y., et al. Biatractylolide modulates Pi3k-Akt-Gsk3β-dependent pathways to protect against glutamate-induced cell damage in pc12 and sh-sy5y cells. Evidence‐Based Complementary and Alternative Medicine, 2017 , 1291458. https://doi.org/10.1155/2017/1291458
[75]

Liu, F., Gong, X. H., Zhang, G. M.,et al. The inhibition of glycogen synthase kinase 3β by a metabotropic glutamate receptor 5 mediated pathway confers neuroprotection to Aβ peptides. Journal of neurochemistry, 2005, 95: 1363–1372. https://doi.org/10.1111/j.1471-4159.2005.03474.x

[76]

Zhao, H., Ji, Z. H., Liu, C. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats. Neuroscience, 2015, 290: 485–491. https://doi.org/10.1016/j.neuroscience.2015.01.060

[77]

Liu, C., Zhao, H., Ji, Z. H., et al. Neuroprotection of Atractylenolide III from Atractylodis macrocephalae Against Glutamate-Induced Neuronal Apoptosis Via Inhibiting Caspase Signaling Pathway. Neurochemical research, 2014, 39: 1753–1758. https://doi.org/10.1007/s11064-014-1370-7

[78]

Hu, W. X., Xiang, Q., Wen, Z., et al. Neuroprotective effect of Atractylodes macrocephalaon polysaccharides in vitro on neuronal apoptosis induced by hypoxia. Molecular Medicine Reports, 2014, 9: 2573–2581. https://doi.org/10.3892/mmr.2014.2105

[79]

Escobar-Morreale, H. F., Asuncion, M., Calvo, R. M., et al. Receiver operating characteristic analysis of the performance of basal serum hormone profiles for the diagnosis of polycystic ovary syndrome in epidemiological studies. European journal of endocrinology, 2001, 145: 619–624. https://doi.org/10.1530/eje.0.1450619

[80]

Zhou, J., Qu, F., Barry, J. A., et al. An atractylodes macrocephala koidz extract alleviates hyperandrogenism of polycystic ovarian syndrome. International Journal of Clinical and Experimental Medicine, 2016, 9: 2758–2767.

[81]

Zhang, X. L., Wang, L., Xu, L.,et al. Effects of Atractylodes macrocephala on the cytomembrane Ca2+-activated K+ currents in cells of human pregnant myometrial smooth muscles. Journal of Huazhong University of Science and Technology, 2008, 28: 200–203. https://doi.org/10.1007/s11596-008-0222-6

[82]

Weng, Q., Cao, Z. F., Yu, Y. W., et al. The effects of extracts of atractylodes macrocephala koidz combined with transcutaneous electrical acupoint stimulation in treating the ovariectomized female rats. African Journal of Traditional, Complementary and Alternative Medicines, 2016, 13: 243–249. https://doi.org/10.4314/ajtcam.v13i2.29

[83]

Jin, C., Zhang, P. J., Bao, C. Q., et al. Protective effects of Atractylodes macrocephala polysaccharide on liver ischemia-reperfusion injury and its possible mechanism in rats. The American Journal of Chinese Medicine, 2011, 39: 489–502. https://doi.org/10.1142/S0192415X11008981

[84]

Shi, N., Su, J., Yang, Z. B., et al. Antioxidant effect of polysaccharides from Atractylodes macrocephala in D-galactose-induced aging mice. Chinese Journal of New Drugs, 2014, 23: 577–581,584.

[85]

Ha, H., An, H., Shim, K. S., et al. Ethanol extract of Atractylodes macrocephala protects bone loss by inhibiting osteoclast differentiation. Molecules, 2013, 18: 7376–7388. https://doi.org/10.3390/molecules18077376

[86]

Li, X. C., Wei, G., Wang, X. Z., et al. Targeting of the Sonic Hedgehog pathway by atractylenolides promotes chondrogenic differentiation of mesenchymal stem cells. Biological and Pharmaceutical Bulletin, 2012, 35: 1328–1335. https://doi.org/10.1248/bpb.b12-00265

[87]
Lefebvre, V. SOX9 is a potent activator of the chondrocyte-specific enhancer of the proalpha1 (II) collagen gene. Molecular and Cellular Biology, 1997 , 17: 23362346Legrand. https://doi.org/10.1128/MCB.17.4.2336
[88]

Peng, W., Han, T., Xin, W. B., et al. Comparative research of chemical constituents and bioactivities between petroleum ether extracts of the aerial part and the rhizome of Atractylodes macrocephala. Medicinal chemistry research, 2011, 20: 146–151. https://doi.org/10.1007/s00044-010-9311-8

[89]

Shu, Y. T., Kao, K. T., Weng, C. S. In vitro antibacterial and cytotoxic activities of plasma-modified polyethylene terephthalate nonwoven dressing with aqueous extract of Rhizome Atractylodes macrocephala. Materials Science and Engineering: C, 2017, 77: 606–612. https://doi.org/10.1016/j.msec.2017.03.291

[90]

Lee, Y. P., Lee, Y. J., Lee, S. M., et al. Effect of Atractylodes macrocephala on hypertonic stress-induced water channel protein expression in renal collecting duct cells. Evidence‐Based Complementary and Alternative Medicine, 2012, 1: 650809. https://doi.org/10.1155/2012/650809

[91]

Gao, H. Y., Zhu, X. H., Xi, Y., et al. Anti-depressant-like effect of atractylenolide I in a mouse model of depression induced by chronic unpredictable mild stress. Experimental and therapeutic medicine, 2018, 15: 1574–1579. https://doi.org/10.3892/etm.2017.5517

[92]

Shan, J. J., Tian, G. Y. Studies on physico-chemical properties and hypoglycemic activity of complex polysaccharide AMP-B from Atractylodes macrocephala Koidz. Acta Pharmaceutica Sinica, 2003, 06: 438–441.

[93]

Xie, J. Q., Xu, D. D., Wang, C., et al. Jiawei Xiaoyao San in treatment of anxiety disorder and anxiety: A review. Chinese Herbal Medicines, 2023, 15: 214–221. https://doi.org/10.1016/j.chmed.2022.12.007

[94]

Xiao, C. Y., Xu, C., He, N. N., et al. Atractylenolide II prevents radiation damage via MAPKp38/Nrf2 signaling pathway. Biochemical Pharmacology, 2020, 177: 114007. https://doi.org/10.1016/j.bcp.2020.114007

[95]

Wang, C. H., Wang, S. C. Chen, Q. H., et al. A capillary gas chromatography-selected ion monitoring mass spectrometry method for the analysis of atractylenolide I in rat plasma and tissues, and application in a pharmacokinetic study. Journal of Chromatography B, 2008, 863: 215–222. https://doi.org/10.1016/j.jchromb.2008.01.004

[96]

Li, Y. J., Zhang, Y. S., Wang, Z. M., et al. Quantitative analysis of atractylenolide I in rat plasma by LC-MS/MS method and its application to pharmacokinetic study. Journal of pharmaceutical and biomedical analysis, 2012, 58: 172–176. https://doi.org/10.1016/j.jpba.2011.09.023

[97]

Shi, Y. Y., Guan, S. H., Tang, R. N., et al. Simultaneous determination of atractylenolide II and atractylenolide III by liquid chromatography–tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of Atractylodes Macrocephala Rhizoma extract. Biomedical Chromatography, 2012, 26: 1386–1392. https://doi.org/10.1002/bmc.2709

Food & Medicine Homology
Cite this article:
Wang J-B, Wang L, Yang S-H. Pharmacological Properties of Atractylodes macrocephala Koidz.: A Comprehensive Review. Food & Medicine Homology, 2025, https://doi.org/10.26599/FMH.2026.9420089
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return