Home Friction Article
PDF (4.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Surface nanofabrication beyond optical diffraction limit: Optical driven assembly enabled by superlubricity

Jiang-Tao Liu1,2,()Deli Peng3,4,Qin Yang1Ze Liu5()Zhenhua Wu2()
College of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
Center for Quantum Matters, Zhejiang University, Hangzhou 310027, China
Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China.

† Jiang-Tao Liu and Deli Peng contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The optical manipulation of nanoparticles on superlubricity surfaces was investigated. The research revealed that, due to the near-zero static friction and extremely low dynamic friction at superlubricity interfaces, the maximum intensity for controlling the optical field can be less than 100 W/cm2. The controlled nanoparticle radius can be as small as 5 nm, which is more than one order of magnitude smaller than that of nanoparticles controlled through traditional optical manipulation. Manipulation can be achieved on sub-microsecond to microsecond timescales. Furthermore, the manipulation takes place on solid surfaces and in nonliquid environments, with minimal impact from Brownian motion. By appropriately increasing the dynamic friction, controlling the light intensity, or reducing the pressure, the effects of Brownian motion can be eliminated, allowing for the construction of microstructures with a size as small as 1/75 of the wavelength of light while controlling the light intensity, which is seven orders of magnitude smaller compared to manipulating nanoparticles on traditional surfaces. This enables the control of super-resolution optical microstructures. The optical super-resolution manipulation of nanoparticles on superlubricity surfaces has important applications in fields such as nanofabrication, photolithography, optical metasurfaces, and biochemical analysis.

References

[1]

Del Barrio J, Sánchez-Somolinos C. Light to shape the future: From photolithography to 4D printing. Adv Opt Mater 7(16): 1900598 (2019)

[2]

Bratton D, Yang D, Dai J Y, Ober C K. Recent progress in high resolution lithography. Polym Adv Technol 17(2): 94–103 (2006)

[3]
Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge (UK): Cambridge University Press, 1999.
[4]

Wagner C, Harned N. Lithography gets extreme. Nat Photon 4(1): 24–26 (2010)

[5]

Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y W, Attwood D, Jacobsen C. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297(5580): 376–378 (2002)

[6]

Wu B Q, Kumar A. Extreme ultraviolet lithography: A review. J Vac Sci Technol B 25(6): 1743–1761 (2007)

[7]

Neuman K C, Nagy A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6): 491–505 (2008)

[8]

Juan M L, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photon 5(6): 349–356 (2011)

[9]

Zhang Y Q, Min C J, Dou X J, Wang X Y, Urbach H P, Somekh M G, Yuan X C. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light Sci Appl 10: 59 (2021)

[10]

Liu J, Zheng M, Xiong Z J, Li Z Y. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto Electron Adv 4(1): 200015 (2021)

[11]

Zhuang X W. Unraveling DNA condensation with optical tweezers. Science 305(5681): 188–190 (2004)

[12]

Favre-Bulle I A, Scott E K. Optical tweezers across scales in cell biology. Trends Cell Biol 32(11): 932–946 (2022)

[13]

Meijering A E C, Sarlós K, Nielsen C F, Witt H, Harju J, Kerklingh E, Haasnoot G H, Bizard A H, Heller I, Broedersz C P, et al. Nonlinear mechanics of human mitotic chromosomes. Nature 605(7910): 545–550 (2022)

[14]

Sullivan R C, Boyer-Chelmo H, Gorkowski K, Beydoun H. Aerosol optical tweezers elucidate the chemistry, acidity, phase separations, and morphology of atmospheric microdroplets. Acc Chem Res 53(11): 2498–2509 (2020)

[15]

Jamali R, Nazari F, Ghaffari A, Velu S K P, Moradi A R. Speckle tweezers for manipulation of high and low refractive index micro-particles and nano-particle loaded vesicles. Nanophotonics 10(11): 2915–2928 (2021)

[16]

Jiang Q B, Roy P, Claude J B, Wenger J. Single photon source from a nanoantenna-trapped single quantum dot. Nano Lett 21(16): 7030–7036 (2021)

[17]

Ghosh S, Ranjan A D, Das S, Sen R, Roy B, Roy S, Banerjee A. Directed self-assembly driven mesoscale lithography using laser-induced and manipulated microbubbles: Complex architectures and diverse applications. Nano Lett 21(1): 10–25 (2021)

[18]

Shakhov A M, Astafiev A A, Plutenko D O, Sarkisov O M, Shushin A I, Nadtochenko V A. Femtosecond optical trap-assisted nanopatterning through microspheres by a single Ti: Sapphire oscillator. J Phys Chem C 119(22): 12562–12571 (2015)

[19]

Hod O, Meyer E, Zheng Q S, Urbakh M. Structural superlubricity and ultralow friction across the length scales. Nature 563(7732): 485–492 (2018)

[20]

Luo J B, Liu M, Ma L R. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021)

[21]

Zhai W Z, Zhou K. Nanomaterials in superlubricity. Adv Funct Mater 29(28): 1806395 (2019)

[22]

Yang J R, Liu Z, Grey F, Xu Z P, Li X D, Liu Y L, Urbakh M, Cheng Y, Zheng Q S. Observation of high-speed microscale superlubricity in graphite. Phys Rev Lett 110(25): 255504 (2013)

[23]

Liu S W, Wang H P, Xu Q, Ma T B, Yu G, Zhang C H, Geng D C, Yu Z W, Zhang S G, Wang W Z, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8: 14029 (2017)

[24]

Cihan E, İpek S, Durgun E, Baykara M Z. Structural lubricity under ambient conditions. Nat Commun 7: 12055 (2016)

[25]

Li J J, Li J F, Chen X C, Liu Y H, Luo J B. Microscale superlubricity at multiple gold–graphite heterointerfaces under ambient conditions. Carbon 161: 827–833 (2020)

[26]

Jiryaei Sharahi H, Egberts P, Kim S. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation. Nanotechnology 30(7): 075502 (2019)

[27]

Peyrard M, Aubry S. Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel−Kontorova model. J Phys C Solid State Phys 16(9): 1593–1608 (1983)

[28]

Bai H Z, Zou G J, Bao H W, Li S Z, Ma F, Gao H J. Deformation coupled moiré mapping of superlubricity in graphene. ACS Nano 17(13): 12594–12602 (2023)

[29]

Yan W D, Gao X, Ouyang W, Liu Z, Hod O, Urbakh M. Shape-dependent friction scaling laws in twisted layered material interfaces. J Mech Phys Solids 185: 105555 (2024)

[30]

Kawai S, Benassi A, Gnecco E, Söde H, Pawlak R, Feng X L, Müllen K, Passerone D, Pignedoli C A, Ruffieux P, et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351(6276): 957–961 (2016)

[31]

Liao M Z, Nicolini P, Du L J, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat Mater 21(1): 47–53 (2022)

[32]

Ge X Y, Chai Z Y, Shi Q Y, Liu Y F, Wang W Z. Graphene superlubricity: A review. Friction 11(11): 1953–1973 (2023)

[33]

Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A, Zandbergen H W. Superlubricity of graphite. Phys Rev Lett 92(12): 126101 (2004)

[34]

Gao X L, Chen H, Yan H, Huang C R, Wu L, Wang T T. Superlubricity by polyimide-induced alignment. Friction 11(9): 1690–1707 (2023)

[35]

Büch H, Rossi A, Forti S, Convertino D, Tozzini V, Coletti C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res 11(11): 5946–5956 (2018)

[36]

Shi S, Guo D, Luo J B. Micro/atomic-scale vibration induced superlubricity. Friction 9(5): 1163–1174 (2021)

[37]

Liu Y M, Wang K, Xu Q, Zhang J, Hu Y Z, Ma T B, Zheng Q S, Luo J B. Superlubricity between graphite layers in ultrahigh vacuum. ACS Appl Mater Inter 12(38): 43167–43172 (2020)

[38]

Buzio R, Gerbi A, Bernini C, Repetto L, Vanossi A. Graphite superlubricity enabled by triboinduced nanocontacts. Carbon 184: 875–890 (2021)

[39]
Liu J X, Yang X Q, Fang H, Yan W D, Ouyang W G, Liu Z. In situ twistronics: A new platform based on superlubricity. Adv Mater in press, DOI: 10.1002/adma.202305072.
[40]

Li J J, Luo J B. Advancements in superlubricity. Sci China Technol Sci 56(12): 2877–2887 (2013)

[41]

Zheng Q S, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Phys Rev Lett 88(4): 045503 (2002)

[42]

Peng D L, Wu Z H, Shi D W, Qu C Y, Jiang H Y, Song Y M, Ma M, Aeppli G, Urbakh M, Zheng Q S. Load-induced dynamical transitions at graphene interfaces. Proc Natl Acad Sci USA 117(23): 12618–12623 (2020)

[43]

Huang X Y, Lin L, Zheng Q S. Theoretical study of superlubric nanogenerators with superb performances. Nano Energy 70: 104494 (2020)

[44]

Huang X Y, Xiang X J, Nie J H, Peng D L, Yang F W, Wu Z H, Jiang H Y, Xu Z P, Zheng Q S. Microscale Schottky superlubric generator with high direct-current density and ultralong life. Nat Commun 12: 2990 (2021)

[45]

Wu Z H, Huang X Y, Xiang X J, Zheng Q S. Electro-superlubric springs for continuously tunable resonators and oscillators. Commun Mater 2: 104 (2021)

[46]
Zhang S M, Vu C C, Li Q Y, Tagawa N, Zheng Q S. Superlubricity relevant in hard disk drive applications. In: Proceedings of the ASME 2016 Conference on Information Storage and Processing Systems, Santa Clara, USA, 2016.
[47]

Zhou M M, Zhou C B, Luo K, Li W M, Liu J T, Liu Z, Wu Z H. Ultrawide bandwidth and sensitive electro-optic modulator based on a graphene nanoelectromechanical system with superlubricity. Carbon 176: 228–234 (2021)

[48]

Xu Y L, Zhang C, Li W M, Li R, Liu J T, Liu Z, Wu Z H. High sensitivity ultraviolet graphene-metamaterial integrated electro-optic modulator enhanced by superlubricity. Nanophotonics 11(16): 3547–3557 (2022)

[49]

Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 124(5–6): 529–541 (1996)

[50]

Lee S Y, Jeong T Y, Jung S, Yee K J. Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys Status Solidi B 256(6): 1800417 (2019)

[51]

Beal A R, Hughes H P. Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J Phys C Solid State Phys 12(5): 881–890 (1979)

[52]

Wang T, Shi X Y, Wang J, Xu Y J, Chen J, Dong Z, Jiang M, Ma P F, Su R T, Ma Y X, et al. Nonlinear photoresponse of metallic graphene-like VSe2 ultrathin nanosheets for pulse laser generation. Sci China Inform Sci 62(12): 220406 (2019)

[53]

Liu W J, Liu M L, Liu X M, Wang X T, Deng H X, Lei M, Wei Z M, Wei Z Y. Recent advances of 2D materials in nonlinear photonics and fiber lasers. Adv Opt Mater 8(8): 1901631 (2020)

[54]

Wen X L, Chen S J, Zhao J X, Du W, Zhao W J. Enhanced plasmonic hot-carrier transfer in Au/WS2 heterojunctions under nonequilibrium condition. ACS Photonics 9(5): 1522–1528 (2022)

[55]

Guerra R, Tartaglino U, Vanossi A, Tosatti E. Ballistic nanofriction. Nat Mater 9(8): 634–637 (2010)

[56]

Liu Z, Liu J Z, Cheng Y, Li Z H, Wang L, Zheng Q S. Interlayer binding energy of graphite: A mesoscopic determination from deformation. Phys Rev B 85(20): 205418 (2012)

[57]

Wang J, Khosravi A, Vanossi A, Tosatti E. Colloquium: Sliding and pinning in structurally lubric 2D material interfaces. Rev Mod Phys 96: 011002 (2024)

[58]

Dietzel D, Feldmann M, Schwarz U D, Fuchs H, Schirmeisen A. Scaling laws of structural lubricity. Phys Rev Lett 111(23): 235502 (2013)

[59]

Shen Y J, Jia N N, Wong N, Lam E Y. Robust level-set-based inverse lithography. Opt Express 19(6): 5511 (2011)

[60]

Li T C, Kheifets S, Medellin D, Raizen M G. Measurement of the instantaneous velocity of a Brownian particle. Science 328(5986): 1673–1675 (2010)

[61]

Huang X Y, Li T F, Wang J, Xia K, Tan Z P, Peng D L, Xiang X J, Liu B, Ma M, Zheng Q S. Robust microscale structural superlubricity between graphite and nanostructured surface. Nat Commun 14: 2931 (2023)

Friction
Article number: 9440919
Cite this article:
Liu J-T, Peng D, Yang Q, et al. Surface nanofabrication beyond optical diffraction limit: Optical driven assembly enabled by superlubricity. Friction, 2025, 13(3): 9440919. https://doi.org/10.26599/FRICT.2025.9440919
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return