Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Atomically thin lubrication materials with anti-friction properties are crucial for reducing energy consumption and extending the service life of micro/nanoelectromechanical systems (MEMS/NEMS). However, achieving atomically thin films with ultra-low friction properties at the atomic/nanoscale even at the micrometer scale presents significant challenges. In this study, large-size and high-quality monolayer MoS2 (ML MoS2) was grown on SiO2/Si substrate by chemical vapor deposition (CVD) method. Compared with mechanically exfoliated ML MoS2, the CVD-grown ML MoS2 (CVD-MoS2) exhibits an ultra-lower friction coefficient (0.00904). Based on the stick–slip effect and Prandtl–Tomlinson (P–T) model, the reduction of puckering effect indicates stronger interaction and lower interface potential barrier in tip, CVD-MoS2, and SiO2/Si substrate system. Moreover, combining with the density functional theory calculations, the stronger interface adhesion and higher overall charge redistribution degree of CVD-MoS2 can also be used to explain its ultralow friction state. This work will provide theoretical guidance for designing ultra-thin lubricating materials with ultra-low friction properties.
Chandross M, Lorenz C D, Grest G S, Stevens M J, Webb E B. Nanotribology of anti-friction coatings in MEMS. JOM 57(9): 55–61 (2005)
Maboudian Roya, C Carlo. Surface chemistry and tribology of MEMS. Annual Review of Physical Chemistry 55(1): 35–54 (2004)
Yin N, Xing Z G, He K, Zhang Z N. Tribo-informatics approaches in tribology research: A review. Friction 11(1): 1–22 (2023)
Meng Y G, Xu J, Ma L R, Jin Z M, Prakash B, Ma T B, Wang W Z. A review of advances in tribology in 2020–2021. Friction 10(10): 1443–1595 (2022)
Yu T T, Shen R L, Wu Z S, Du C H, Shen X J, Jia N, Deng H Y, Zhao Y K, Zhang L Q, Feng Y G, et al. Monolayer NbSe2 favors ultralow friction and super wear resistance. Nano Lett 23(5): 1865–1871 (2023)
Wu Z S, Yu T T, Wu W, Liu J X, Zhang Z N, Wang D A, Liu W M. Nanotribology of SiP nanosheets: Effect of thickness and sliding velocity. Friction 10(12): 2033–2044 (2022)
Zhang X L, Ren T H, Li Z P. Recent advances of two-dimensional lubricating materials: From tunable tribological properties to applications. J Mater Chem A 11(17): 9239–9269 (2023)
Kim S H, Asay D B, Dugger M T. Nanotribology and mems. Nano Today 2(5): 22–29 (2007)
Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Frictional characteristics of atomically thin sheets. Science 328(5974): 76–80 (2010)
Cao X A, Gan X H, Peng Y T, Wang Y X, Zeng X Z, Lang H J, Deng J N, Zou K. An ultra-low frictional interface combining FDTS SAMs with molybdenum disulfide. Nanoscale 10(1): 378–385 (2018)
Huang P, Castellanos-Gomez A, Guo D, Xie G X, Li J. Frictional characteristics of suspended MoS2. J Phys Chem C 122(47): 26922–26927 (2018)
Zeng Y M, He F, Wang Q, Yan X H, Xie G X. Friction and wear behaviors of molybdenum disulfide nanosheets under normal electric field. Appl Surf Sci 455: 527–532 (2018)
Shi B, Gan X H, Lang H J, Zou K, Wang L F, Sun J H, Lu Y Y, Peng Y T. Ultra-low friction and patterning on atomically thin MoS2 via electronic tight-binding. Nanoscale 13(40): 16860–16871 (2021)
Kim S H, Ahn H S. Nanotribological properties and scratch resistance of MoS2 bilayer on a SiO2/Si substrate. Friction 11(1): 154–164 (2023)
Cao X A, Gan X H, Lang H J, Peng Y T. Impact of the surface and microstructure on the lubricative properties of MoS2 aging under different environments. Langmuir 37(9): 2928–2941 (2021)
Zhao X Y, Phillpot S R, Sawyer W G, Sinnott S B, Perry S S. Transition from thermal to athermal friction under cryogenic conditions. Phys Rev Lett 102(18): 186102 (2009)
Vazirisereshk M R, Ye H, Ye Z J, Otero-de-la-Roza A, Zhao M Q, Gao Z L, Charlie Johnson A T, Johnson E R, Carpick R W, Martini A. Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure. Nano Lett 19(8): 5496–5505 (2019)
Fang L, Liu D M, Guo Y Z, Liao Z M, Luo J B, Wen S Z. Thickness dependent friction on few-layer MoS2, WS2, and WSe2. Nanotechnology 28(24): 245703 (2017)
Acikgoz O, Baykara M Z. Speed dependence of friction on single-layer and bulk MoS2 measured by atomic force microscopy. Appl Phys Lett 116(7): 071603 (2020)
Vazirisereshk M R, Hasz K, Carpick R W, Martini A. Friction anisotropy of MoS2: Effect of tip–sample contact quality. J Phys Chem Lett 11(16): 6900–6906 (2020)
Cho D H, Wang L, Kim J S, Lee G H, Kim E S, Lee S, Lee S Y, Hone J, Lee C G. Effect of surface morphology on friction of graphene on various substrates. Nanoscale 5(7): 3063 (2013)
Paolicelli G, Tripathi M, Corradini V, Candini A, Valeri S. Nanoscale frictional behavior of graphene on SiO2 and Ni(111) substrates. Nanotechnology 26(5): 055703 (2015)
Zheng X H, Gao L, Yao Q Z, Li Q Y, Zhang M, Xie X M, Qiao S, Wang G, Ma T B, Di Z F, et al. Robust ultra-low-friction state of graphene via moiré superlattice confinement. Nat Commun 7: 13204 (2016)
Qi Y Z, Liu J, Dong Y L, Feng X Q, Li Q Y. Impacts of environments on nanoscale wear behavior of graphene: Edge passivation vs. substrate pinning. Carbon 139: 59–66 (2018)
Liu Y Q, Jiang Y L, Sun J H, Wang Y, Qian L M, Kim S H, Chen L. Inverse relationship between thickness and wear of fluorinated graphene: “Thinner is better”. Nano Lett 22(14): 6018–6025 (2022)
Tang C, Jiang Y L, Chen L, Sun J H, Liu Y Q, Shi P F, Aguilar-Hurtado J Y, Rosenkranz A, Qian L M. Layer-dependent nanowear of graphene oxide. ACS Nano 17(3): 2497–2505 (2023)
Zeng X Z, Peng Y T, Lang H J. A novel approach to decrease friction of graphene. Carbon 118: 233–240 (2017)
Gong C, Huang C M, Miller J, Cheng L X, Hao Y F, Cobden D, Kim J, Ruoff R S, Wallace R M, Cho K, et al. Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano 7(12): 11350–11357 (2013)
Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, et al. A library of atomically thin metal chalcogenides. Nature 556(7701): 355–359 (2018)
Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17): 2320–2325 (2012)
Lee C G, Yan H G, Brus L E, Heinz T F, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5): 2695–2700 (2010)
Romanov R I, Kozodaev M G, Myakota D I, Chernikova A G, Novikov S M, Volkov V S, Slavich A S, Zarubin S S, Chizhov P S, Khakimov R R, et al. Synthesis of large area two-dimensional MoS2 films by sulfurization of atomic layer deposited MoO3 thin film for nanoelectronic applications. ACS Appl Nano Mater 2(12): 7521–7531 (2019)
Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017): 568–571 (2011)
Ho Y T, Ma C H, Luong T T, Wei L L, Yen T C, Hsu W T, Chang W H, Chu Y C, Tu Y Y, Pande K P, et al. Layered MoS2 grown on c-sapphire by pulsed laser deposition. Phys Status Solidi RRL 9(3): 187–191 (2015)
Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano 5(12): 9703–9709 (2011)
Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg G S, Grunlan J C, Moriarty G, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23(34): 3944–3948 (2011)
Le Cao K, Tran Khac B C, Le C T, Kim Y S, Chung K H. Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction 6(4): 395–406 (2018)
Zhang X X, Lou F, Li C L, Zhang X, Jia N, Yu T T, He J L, Zhang B T, Xia H B, Wang S P, et al. Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber. CrystEngComm 17(21): 4026–4032 (2015)
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science 306(5696): 666–669 (2004)
Ogletree D F, Carpick R W, Salmeron M. Calibration of frictional forces in atomic force microscopy. Rev Sci Instrum 67(9): 3298–3306 (1996)
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C. First principles methods using CASTEP. Z Für Kristallogr Cryst Mater 220(5-6): 567–570 (2005)
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 77(18): 3865–3868 (1996)
Lei J C, Xie Y, Kutana A, Bets K V, Yakobson B I. Salt-assisted MoS2 growth: Molecular mechanisms from the first principles. J Am Chem Soc 144(16): 7497–7503 (2022)
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 6: 147–150 (2011)
Zbořil R, Karlický F, Bourlinos A B, Steriotis T A, Stubos A K, Georgakilas V, Šafářová K, Jančík D, Trapalis C, Otyepka M. Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6(24): 2885–2891 (2010)
Khestanova E, Guinea F, Fumagalli L, Geim A K, Grigorieva I V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat Commun 7: 12587 (2016)
Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv Funct Mater 22(7): 1385–1390 (2012)
Zheng J Y, Yan X X, Lu Z X, Qiu H L, Xu G C, Zhou X, Wang P, Pan X Q, Liu K H, Jiao L Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv Mater 29(13): 1604540 (2017)
Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons. Sci Rep 3: 2657 (2013)
Sohn A, Kim C, Jung J H, Kim J H, Byun K E, Cho Y, Zhao P, Kim S W, Seol M, Lee Z, et al. Precise layer control and electronic state modulation of a transition metal dichalcogenide via phase-transition-induced growth. Adv Mater 34(48): 2103286 (2022)
Liu H, Yang B M, Wang C, Han Y S, Liu D M. The mechanisms and applications of friction energy dissipation. Friction 11(6): 839–864 (2023)
Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H J. Velocity dependence of atomic friction. Phys Rev Lett 84(6): 1172–1175 (2000)
Jansen L, Hölscher H, Fuchs H, Schirmeisen A. Temperature dependence of atomic-scale stick–slip friction. Phys Rev Lett 104(25): 256101 (2010)
Popov V L, Gray J A T. Prandtl-Tomlinson model: History and applications in friction, plasticity, and nanotechnologies. ZAMM J Appl Math Mech/Z Für Angew Math Und Mech 92(9): 683–708 (2012)
Socoliuc A, Bennewitz R, Gnecco E, Meyer E. Transition from stick−slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys Rev Lett 92(13): 134301 (2004)
405
Views
48
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).