AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (5.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Atomically thin MoS2 with ultra-low friction properties based on strong interface interaction

Xinjian He1,2,Tongtong Yu1,5,Zishuai Wu4Changhe Du1,2Haoyu Deng1,2Yongkang Zhao1Shuang Li1Yange Feng1,3Liqiang Zhang1,3Zhinan Zhang4Daoai Wang1,3( )
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 265503, China
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China

† Xinjian He and Tongtong Yu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Atomically thin lubrication materials with anti-friction properties are crucial for reducing energy consumption and extending the service life of micro/nanoelectromechanical systems (MEMS/NEMS). However, achieving atomically thin films with ultra-low friction properties at the atomic/nanoscale even at the micrometer scale presents significant challenges. In this study, large-size and high-quality monolayer MoS2 (ML MoS2) was grown on SiO2/Si substrate by chemical vapor deposition (CVD) method. Compared with mechanically exfoliated ML MoS2, the CVD-grown ML MoS2 (CVD-MoS2) exhibits an ultra-lower friction coefficient (0.00904). Based on the stick–slip effect and Prandtl–Tomlinson (P–T) model, the reduction of puckering effect indicates stronger interaction and lower interface potential barrier in tip, CVD-MoS2, and SiO2/Si substrate system. Moreover, combining with the density functional theory calculations, the stronger interface adhesion and higher overall charge redistribution degree of CVD-MoS2 can also be used to explain its ultralow friction state. This work will provide theoretical guidance for designing ultra-thin lubricating materials with ultra-low friction properties.

Electronic Supplementary Material

Download File(s)
F0936-ESM.pdf (682.3 KB)

References

[1]

Chandross M, Lorenz C D, Grest G S, Stevens M J, Webb E B. Nanotribology of anti-friction coatings in MEMS. JOM 57(9): 55–61 (2005)

[2]

Maboudian Roya, C Carlo. Surface chemistry and tribology of MEMS. Annual Review of Physical Chemistry 55(1): 35–54 (2004)

[3]

Yin N, Xing Z G, He K, Zhang Z N. Tribo-informatics approaches in tribology research: A review. Friction 11(1): 1–22 (2023)

[4]

Meng Y G, Xu J, Ma L R, Jin Z M, Prakash B, Ma T B, Wang W Z. A review of advances in tribology in 2020–2021. Friction 10(10): 1443–1595 (2022)

[5]

Yu T T, Shen R L, Wu Z S, Du C H, Shen X J, Jia N, Deng H Y, Zhao Y K, Zhang L Q, Feng Y G, et al. Monolayer NbSe2 favors ultralow friction and super wear resistance. Nano Lett 23(5): 1865–1871 (2023)

[6]

Wu Z S, Yu T T, Wu W, Liu J X, Zhang Z N, Wang D A, Liu W M. Nanotribology of SiP nanosheets: Effect of thickness and sliding velocity. Friction 10(12): 2033–2044 (2022)

[7]

Zhang X L, Ren T H, Li Z P. Recent advances of two-dimensional lubricating materials: From tunable tribological properties to applications. J Mater Chem A 11(17): 9239–9269 (2023)

[8]

Kim S H, Asay D B, Dugger M T. Nanotribology and mems. Nano Today 2(5): 22–29 (2007)

[9]

Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J. Frictional characteristics of atomically thin sheets. Science 328(5974): 76–80 (2010)

[10]

Cao X A, Gan X H, Peng Y T, Wang Y X, Zeng X Z, Lang H J, Deng J N, Zou K. An ultra-low frictional interface combining FDTS SAMs with molybdenum disulfide. Nanoscale 10(1): 378–385 (2018)

[11]

Huang P, Castellanos-Gomez A, Guo D, Xie G X, Li J. Frictional characteristics of suspended MoS2. J Phys Chem C 122(47): 26922–26927 (2018)

[12]

Zeng Y M, He F, Wang Q, Yan X H, Xie G X. Friction and wear behaviors of molybdenum disulfide nanosheets under normal electric field. Appl Surf Sci 455: 527–532 (2018)

[13]

Shi B, Gan X H, Lang H J, Zou K, Wang L F, Sun J H, Lu Y Y, Peng Y T. Ultra-low friction and patterning on atomically thin MoS2 via electronic tight-binding. Nanoscale 13(40): 16860–16871 (2021)

[14]

Kim S H, Ahn H S. Nanotribological properties and scratch resistance of MoS2 bilayer on a SiO2/Si substrate. Friction 11(1): 154–164 (2023)

[15]

Cao X A, Gan X H, Lang H J, Peng Y T. Impact of the surface and microstructure on the lubricative properties of MoS2 aging under different environments. Langmuir 37(9): 2928–2941 (2021)

[16]

Zhao X Y, Phillpot S R, Sawyer W G, Sinnott S B, Perry S S. Transition from thermal to athermal friction under cryogenic conditions. Phys Rev Lett 102(18): 186102 (2009)

[17]

Vazirisereshk M R, Ye H, Ye Z J, Otero-de-la-Roza A, Zhao M Q, Gao Z L, Charlie Johnson A T, Johnson E R, Carpick R W, Martini A. Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure. Nano Lett 19(8): 5496–5505 (2019)

[18]

Fang L, Liu D M, Guo Y Z, Liao Z M, Luo J B, Wen S Z. Thickness dependent friction on few-layer MoS2, WS2, and WSe2. Nanotechnology 28(24): 245703 (2017)

[19]

Acikgoz O, Baykara M Z. Speed dependence of friction on single-layer and bulk MoS2 measured by atomic force microscopy. Appl Phys Lett 116(7): 071603 (2020)

[20]

Vazirisereshk M R, Hasz K, Carpick R W, Martini A. Friction anisotropy of MoS2: Effect of tip–sample contact quality. J Phys Chem Lett 11(16): 6900–6906 (2020)

[21]

Cho D H, Wang L, Kim J S, Lee G H, Kim E S, Lee S, Lee S Y, Hone J, Lee C G. Effect of surface morphology on friction of graphene on various substrates. Nanoscale 5(7): 3063 (2013)

[22]

Paolicelli G, Tripathi M, Corradini V, Candini A, Valeri S. Nanoscale frictional behavior of graphene on SiO2 and Ni(111) substrates. Nanotechnology 26(5): 055703 (2015)

[23]

Zheng X H, Gao L, Yao Q Z, Li Q Y, Zhang M, Xie X M, Qiao S, Wang G, Ma T B, Di Z F, et al. Robust ultra-low-friction state of graphene via moiré superlattice confinement. Nat Commun 7: 13204 (2016)

[24]

Qi Y Z, Liu J, Dong Y L, Feng X Q, Li Q Y. Impacts of environments on nanoscale wear behavior of graphene: Edge passivation vs. substrate pinning. Carbon 139: 59–66 (2018)

[25]

Liu Y Q, Jiang Y L, Sun J H, Wang Y, Qian L M, Kim S H, Chen L. Inverse relationship between thickness and wear of fluorinated graphene: “Thinner is better”. Nano Lett 22(14): 6018–6025 (2022)

[26]

Tang C, Jiang Y L, Chen L, Sun J H, Liu Y Q, Shi P F, Aguilar-Hurtado J Y, Rosenkranz A, Qian L M. Layer-dependent nanowear of graphene oxide. ACS Nano 17(3): 2497–2505 (2023)

[27]

Zeng X Z, Peng Y T, Lang H J. A novel approach to decrease friction of graphene. Carbon 118: 233–240 (2017)

[28]

Gong C, Huang C M, Miller J, Cheng L X, Hao Y F, Cobden D, Kim J, Ruoff R S, Wallace R M, Cho K, et al. Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano 7(12): 11350–11357 (2013)

[29]

Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, et al. A library of atomically thin metal chalcogenides. Nature 556(7701): 355–359 (2018)

[30]

Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17): 2320–2325 (2012)

[31]

Lee C G, Yan H G, Brus L E, Heinz T F, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5): 2695–2700 (2010)

[32]

Romanov R I, Kozodaev M G, Myakota D I, Chernikova A G, Novikov S M, Volkov V S, Slavich A S, Zarubin S S, Chizhov P S, Khakimov R R, et al. Synthesis of large area two-dimensional MoS2 films by sulfurization of atomic layer deposited MoO3 thin film for nanoelectronic applications. ACS Appl Nano Mater 2(12): 7521–7531 (2019)

[33]

Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017): 568–571 (2011)

[34]

Ho Y T, Ma C H, Luong T T, Wei L L, Yen T C, Hsu W T, Chang W H, Chu Y C, Tu Y Y, Pande K P, et al. Layered MoS2 grown on c-sapphire by pulsed laser deposition. Phys Status Solidi RRL 9(3): 187–191 (2015)

[35]

Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano 5(12): 9703–9709 (2011)

[36]

Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg G S, Grunlan J C, Moriarty G, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23(34): 3944–3948 (2011)

[37]

Le Cao K, Tran Khac B C, Le C T, Kim Y S, Chung K H. Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction 6(4): 395–406 (2018)

[38]

Zhang X X, Lou F, Li C L, Zhang X, Jia N, Yu T T, He J L, Zhang B T, Xia H B, Wang S P, et al. Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber. CrystEngComm 17(21): 4026–4032 (2015)

[39]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science 306(5696): 666–669 (2004)

[40]

Ogletree D F, Carpick R W, Salmeron M. Calibration of frictional forces in atomic force microscopy. Rev Sci Instrum 67(9): 3298–3306 (1996)

[41]

Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C. First principles methods using CASTEP. Z Für Kristallogr Cryst Mater 220(5-6): 567–570 (2005)

[42]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 77(18): 3865–3868 (1996)

[43]

Lei J C, Xie Y, Kutana A, Bets K V, Yakobson B I. Salt-assisted MoS2 growth: Molecular mechanisms from the first principles. J Am Chem Soc 144(16): 7497–7503 (2022)

[44]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 6: 147–150 (2011)

[45]

Zbořil R, Karlický F, Bourlinos A B, Steriotis T A, Stubos A K, Georgakilas V, Šafářová K, Jančík D, Trapalis C, Otyepka M. Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6(24): 2885–2891 (2010)

[46]

Khestanova E, Guinea F, Fumagalli L, Geim A K, Grigorieva I V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat Commun 7: 12587 (2016)

[47]

Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv Funct Mater 22(7): 1385–1390 (2012)

[48]

Zheng J Y, Yan X X, Lu Z X, Qiu H L, Xu G C, Zhou X, Wang P, Pan X Q, Liu K H, Jiao L Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv Mater 29(13): 1604540 (2017)

[49]

Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons. Sci Rep 3: 2657 (2013)

[50]

Sohn A, Kim C, Jung J H, Kim J H, Byun K E, Cho Y, Zhao P, Kim S W, Seol M, Lee Z, et al. Precise layer control and electronic state modulation of a transition metal dichalcogenide via phase-transition-induced growth. Adv Mater 34(48): 2103286 (2022)

[51]

Liu H, Yang B M, Wang C, Han Y S, Liu D M. The mechanisms and applications of friction energy dissipation. Friction 11(6): 839–864 (2023)

[52]

Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H J. Velocity dependence of atomic friction. Phys Rev Lett 84(6): 1172–1175 (2000)

[53]

Jansen L, Hölscher H, Fuchs H, Schirmeisen A. Temperature dependence of atomic-scale stick–slip friction. Phys Rev Lett 104(25): 256101 (2010)

[54]

Popov V L, Gray J A T. Prandtl-Tomlinson model: History and applications in friction, plasticity, and nanotechnologies. ZAMM J Appl Math Mech/Z Für Angew Math Und Mech 92(9): 683–708 (2012)

[55]

Socoliuc A, Bennewitz R, Gnecco E, Meyer E. Transition from stick−slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys Rev Lett 92(13): 134301 (2004)

Friction
Cite this article:
He X, Yu T, Wu Z, et al. Atomically thin MoS2 with ultra-low friction properties based on strong interface interaction. Friction, 2025, https://doi.org/10.26599/FRICT.2025.9440936

405

Views

48

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 February 2024
Revised: 17 April 2024
Accepted: 16 May 2024
Published: 03 January 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return