AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access | Online First

Fractal models in tribology: A critical review

College of Aerospace Engineering, Chongqing University, Chongqing 400030, China
Show Author Information

Graphical Abstract

Abstract

A detailed review of various fractal models used in tribology is presented. The analysis of the models is based on the use of the Cantor–Borodich (CB) profile and its modifications. This profile and related models may be studied analytically and, therefore, they provide us with tools for rigorous analysis of fractal approaches to description of surface roughness and corresponding contact problems. In turn, this allows us to present a critical review of current fractal approaches to tribology. It will be demonstrated that fractal dimension alone cannot give a full description of surface roughness, however, some of these models may reflect the multilevel hierarchical structure of real surface roughness. This review helps to avoid the repetition of common erroneous statements about the use of fractal concepts in tribology.

References

[1]
Goryacheva I G. Contact Mechanics in Tribology. Dordrecht (the Netherlands): Springer, 1998.
[2]
Whitehouse D J. Handbook of surface and nanometrology. Boca Raton (USA): CRC Press Boca Raton, 2011.
[3]
EN-ISO. ISO 4287 Surface texture parameters defined by the European standard and British standard and British standard. ISO, 1998.
[4]
US-ASME. ASME B46.1 Surface texture (surface roughness, waviness and lay). ASME, 2002.
[5]

Nowicki B. Multiparameter representation of surface roughness. Wear 102(3): 161–176 (1985)

[6]

Whitehouse D J. The parameter rash—Is there a cure. Wear 83(1): 75–78 (1982)

[7]

Gu H Q, Jiao L, Yan P, Guo Z B, Qiu T Y, Wang X B. A surface skewness and kurtosis integrated stress concentration factor model. J Tribol 145(4): 041702 (2023)

[8]

Thomas T R. Surface topography in tribology. Phys Bull 33(9): 326–328 (1982)

[9]

Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J Tribol 112(2): 205–216 (1990)

[10]
Greenwood J A. Problems with surface roughness. In: Fundamentals of Friction: Macroscopic and Microscopic Processes. Singer I L, Pollock H M, Ed. Dordrecht: Springer Netherlands, 1992: 57–76.
[11]

Borodich F. Some fractal models of fracture. J Mech Phys Solids 45(2): 239–259 (1997)

[12]

Chakrabarti B K, Stinchcombe R B. Stick-slip statistics for two fractal surfaces: A model for earthquakes. Phys A Stat Mech Appl 270(1-2): 27–34 (1999)

[13]

Kennedy F E, Brown C A, Kolodny J, Sheldon B M. Fractal analysis of hard disk surface roughness and correlation with static and low-speed friction. J Tribol 121(4): 968–974 (1999)

[14]

Liu S H. Fractal model for the ac response of a rough interface. Phys Rev Lett 55(5): 529–532 (1985)

[15]
Liu S H, Kaplan T, Gray L J. Theory of the AC response of rough Interfaces. In: Fractals in Physics. Pietronero L, Tosatti E, Eds. Amsterdam: Elsevier, 1986: 383–389.
[16]

Roques-Carmes C, Wehbi D, Quiniou J F, Tricot C. Modelling engineering surfaces and evaluating their non-integer dimension for application in material science. Surf Topogr 1: 435–443 (1988)

[17]

Majumdar A, Bhushan B. Fractal model of elastic–plastic contact between rough surfaces. J Tribol 113(1): 1–11 (1991)

[18]

Gong Y X, Xu J, Buchanan R C. Surface roughness: A review of its measurement at micro-/nano-scale. Phys Sci Rev 3(1): 20170057 (2018)

[19]

Zhang X, Zhang L, Yu X Y, Zhu X C, Tu Y W, Kang X. A novel and quantitative determination method for the running-in process through dimensionless real contact area. Wear 514: 204554 (2023)

[20]

Babici L, Tudor A, Romeu Garbi J, Stoica M. Fractal evaluation aspects in characterizing the roughness of a driving wheel from a locomotive. IOP Conf Ser: Mater Sci Eng 724(1): 012028 (2020)

[21]

Sun X G. Fractal model of thermal contact conductance of rough surfaces considering substrate deformation. Ind Lubr Tribol 75(8): 895–903 (2023)

[22]

Chen H X, Yin Q, Dong G H, Xie L F, Yin G F. Stiffness model of fixed joint considering self-affinity and elastoplasticity of asperities. Ind Lubr Tribol 72(1): 128–135 (2019)

[23]

Yu X, Sun Y Y, Zhao D, Wu S J. A revised contact stiffness model of rough curved surfaces based on the length scale. Tribol Int 164: 107206 (2021)

[24]

Sun X G, Meng C X, Duan T T. Fractal model of thermal contact conductance of two spherical joint surfaces considering friction coefficient. Ind Lubr Tribol 74(1): 93–101 (2022)

[25]

Li W B, Zhang L J, Zhang C M, Meng D J, He P F. The influence of surface topography on friction squeal—A review. Proc Inst Mech Eng Part J J Eng Tribol 236(11): 2067–2086 (2022)

[26]

Sun X G, Xing W C. Fractal model of thermal contact conductance of rough surfaces based on elliptical asperity. Ind Lubr Tribol 75(4): 424–431 (2023)

[27]

Dorgham A, Azam A, Parsaeian P, Wang C, Morina A, Neville A. An assessment of the effect of relative humidity on the decomposition of the ZDDP antiwear additive. Tribol Lett 69(2): 72 (2021)

[28]

Kalisz J, Żak K, Wojciechowski S, Gupta M K, Krolczyk G M. Technological and tribological aspects of milling-burnishing process of complex surfaces. Tribol Int 155: 106770 (2021)

[29]

Ye D Y, Liu G N, Zou X, Yang Y G, Wang F T, Gao F. A dual fractal approach to thermal–hydrological–mechanical interactions of unconventional reservoir. Rock Mech Rock Eng 55(11): 7081–7101 (2022)

[30]

Kasar A K, Reeves C J, Menezes P L. The effect of particulate additive mixtures on the tribological performance of phosphonium-based ionic liquid lubricants. Tribol Int 165: 107300 (2022)

[31]

Wang Z, Zhou Y, Zuo X. Tribological effect of ZBUP additive on the running-in quality of sliding bearing by fractal analysis. Ind Lubr Tribol 74(10): 1165–1173 (2022)

[32]

Humphrey E, Elisaus V, Rahmani R, Mohammadpour M, Theodossiades S, Morris N. Diamond like-carbon coatings for electric vehicle transmission efficiency. Tribol Int 189: 108916 (2023)

[33]

Almeida J, Horovistiz A, Davim J P. Digital representation of the wear behaviour of Ti–6Al–4V and Ti–6Al–7Nb biomaterial alloys: A fractal analysis of the worn surface. Proc Inst Mech Eng Part J 237(5): 1156–1169 (2023)

[34]

Borodich F M, Pepelyshev A, Savencu O. Statistical approaches to description of rough engineering surfaces at nano and microscales. Tribol Int 103: 197–207 (2016)

[35]
Borodich F M, Jin X, Pepelyshev A. Probabilistic, fractal, and related techniques for analysis of rngineering surfaces. Front Mech Eng 6 : 64 (2020)
[36]

Humphrey E, Morris N J, Rahmani R, Rahnejat H. Multiscale boundary frictional performance of diamond like carbon coatings. Tribol Int 149: 105539 (2020)

[37]

Borodich F M, Mosolov A B. Fractal contact of solids. Tech phys 36(9): 995–997 (1991)

[38]

Borodich F M, Mosolov A B. Fractal roughness in contact problems. J Appl Math Mech 56(5): 681–690 (1992)

[39]

Borodich F M, Onishchenko D A. Fractal roughness for problem of contact and friction (the simplest models). Wear 14: 452–459 (1993)

[40]
Linnik Y V, Khusu A. Mathematical and statistical description of unevenness of surface profile at grinding. Usp Mat Nauk 9 : 255 (1954)
[41]
Linnik Y V, Khusu A. Mathematical and statistical description of unevenness of surface profile at grinding. Bul USSR Acad Sci Div Techn Sci 20 : 154–159 (1954)
[42]

Whitehouse D J, Archard J F. The properties of random surfaces of significance in their contact. Proc R Soc Lond A 316(1524): 97–121 (1970)

[43]

Pepelyshev A, Borodich F M, Galanov B A, Gorb E V, Gorb S N. Adhesion of soft materials to rough surfaces: Experimental studies, statistical analysis and modelling. Coatings 8(10): 350 (2018)

[44]

Sayles R S, Thomas T R. Surface topography as a nonstationary random process. Nature 271: 431–434 (1978)

[45]

Berry M V, Hannay J H. Topography of random surfaces. Nature 273(5663): 573 (1978)

[46]

Falconer K. Fractal geometry: Mathematical foundations and applications. Biometrics 46(3): 886 (1990)

[47]

Borodich F M. Similarity properties of discrete contact between a fractal punch and an elastic medium. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre 316(3): 281–286 (1993)

[48]

Borodich F M. Parametric homogeneity and non-classical self-similarity. I. Mathematical background. Acta Mech 131(1): 27–45 (1998)

[49]

Borodich F M. Parametric homogeneity and non-classical self-similarity. II. Some applications. Acta Mech 131(1): 47–67 (1998)

[50]

Jacobs T D B, Junge T, Pastewka L. Quantitative characterization of surface topography using spectral analysis. Surf Topogr: Metrol Prop 5(1): 013001 (2017)

[51]

Tanaka H, Okui K, Oku Y, Takezawa H, Shibutani Y. Corrected power spectral density of the surface roughness of tire rubber sliding on abrasive material. Tribol Int 153: 106632 (2021)

[52]

Jacobs T D B, Pastewka L, Editors G. Surface topography as a material parameter. MRS Bull 47(12): 1205–1210 (2022)

[53]

Persson B N J. Influence of surface roughness on press fits. Tribol Lett 71(1): 19 (2022)

[54]

Silva Sabino T, Couto Carneiro A M, Pinto Carvalho R, Andrade Pires F M. The impact of non-Gaussian height distributions on the statistics of isotropic random rough surfaces. Tribol Int 173: 107578 (2022)

[55]

Aghababaei R, Brodsky E E, Molinari J F, Chandrasekar S. How roughness emerges on natural and engineered surfaces. MRS Bull 47(12): 1229–1236 (2022)

[56]

Persson B N J. Functional properties of rough surfaces from an analytical theory of mechanical contact. MRS Bull 47(12): 1211–1219 (2022)

[57]

Pinto Carvalho R, Couto Carneiro A M, Andrade Pires F M, Doca T. An efficient multiscale strategy to predict the evolution of the real contact area between rough surfaces. Tribol Int 165: 107255 (2022)

[58]

Chen S, Li K, Qiao X Q, Ru W M, Xu L. Tactile perception of fractal surfaces: An EEG-fNIRS study. Tribol Int 180: 108266 (2023)

[59]

Persson B N J. On the use of surface roughness parameters. Tribol Lett 71(2): 29 (2023)

[60]

Runacher A, Kazemzadeh-Parsi M J, Di Lorenzo D, Champaney V, Hascoet N, Ammar A, Chinesta F. Describing and modeling rough composites surfaces by using topological data analysis and fractional Brownian motion. Polymers 15(6): 1449 (2023)

[61]
Mandelbrot B B. Les objets fractals: Forme, hasard et dimension. Paris: Flammarion Paris, 1975.
[62]

Mandelbrot B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775): 636–638 (1967)

[63]
Vilenkin N I. Stories about Sets. New York (USA): Academic Press, 1968.
[64]
Mandelbrot B B. Fractals: Form, Chance, and Dimension. San Francisco: W.H. Freeman San Francisco, 1977.
[65]
Mandelbrot B B. The Fractal Geometry of Nature. New York (USA): W H Freeman and Company, 1983.
[66]
Mandelbrot B B. Fractal geometry: What is it, and what does it do? In: Fractals in the Natural Sciences. Princeton: Princeton University Press, 1990: 3–16.
[67]
Feder J. Fractals. New York (USA): Plenum New York, 1989.
[68]
Edgar G A. Measure, Topology, and Fractal Geometry. New York (USA): Springer New York, 1990.
[69]

Borodich F M. Fractals and fractal scaling in fracture mechanics. Int J Frac 95: 239–259 (1999)

[70]
Borodich F M. Fractal geometry. In Encyclopedia of Tribology. Wang Q J, Chung Y W, Eds. Boston: Springer, 2013: 1258–1264.
[71]
Tricot C. Curves and Fractal Dimension. New York (USA): Springer, 1995.
[72]

Berry M V, Lewis Z V. On the Weierstrass–Mandelbrot fractal function. Proc R Soc A 370(1743): 459–484 (1980)

[73]

Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces. Wear 136(2): 313–327 (1990)

[74]

Moreira J G, da Silva J L, Kamphorst S O. On the fractal dimension of self-affine profiles. J Phys A: Math Gen 27(24): 8079–8089 (1994)

[75]

Tricot C, Ferland P, Baran G. Fractal analysis of worn surfaces. Wear 172(2): 127–133 (1994)

[76]

Schmittbuhl J, Roux S, Berthaud Y. Development of roughness in crack propagation. Europhys Lett 28(8): 585–590 (1994)

[77]

Schmittbuhl J, Schmitt F, Scholz C. Scaling invariance of crack surfaces. J Geophys Res Solid Earth 100(B4): 5953–5973 (1995)

[78]

Hansen A, Plouraboué F, Roux S. Shadows in a self-affine landscape. Fractals 3(1): 91–98 (1995)

[79]

Plouraboué F, Roux S, Schmittbuhl J, Vilotte J P. Geometry of contact between self-affine surfaces. Fractals 3(1): 113–122 (1995)

[80]

Blackmore D, Zhou J G. A general fractal distribution function for rough surface profiles. SIAM J Appl Math 56(6): 1694–1719 (1996)

[81]

Vandembroucq D, Roux S. Conformal mapping on rough boundaries. mI. Applications to harmonic problems. Phys Rev E 55(5): 6171–6185 (1997)

[82]
Mandelbrot B B. Self-affine fractal sets, I: The basic fractal dimensions. In: Fractals in Physics. Pietronero L, Tosatti E, Eds. Amsterdam: Elsevier, 1986: 3–15.
[83]

Avnir D, Biham O, Lidar D, Malcai O. Is the geometry of nature fractal. Science 279(5347): 39–40 (1998)

[84]

Mandelbrot B B. Is nature fractal. Science 279(5352): 783 (1998)

[85]

Tsonis A A, Biham O, Malcai O, Lidar D A, Avnir D. Fractality in nature. Science 279(5357): 1611 (1998)

[86]

Whitehouse D J. Fractal or fiction. Wear 249(5-6): 345–353 (2001)

[87]

Borodich F M, Volovikov A Y. Surface integrals for domains with fractal boundaries and some applications to elasticity. Proc R Soc Lond A 456(1993): 1–24 (2000)

[88]

Cantor G. Grundlagen einer allgemeinen Mannich fältigkeitslehre. Mathematische Annalen 21: 545–591 (1883)

[89]

Koch H. Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes. Acta Math 30: 145–174 (1906)

[90]
Koch H. Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Arkiv för Matematik, Astronomi och Fysik 1 : 681–704 (1904)
[91]

Sierpinski W. Sur une courbe dont tout point est un point de ramification. C R Acad Sci Paris 160: 302 (1915)

[92]

Sierpinski W. Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. C R Acad Sci Paris 162: 629–632 (1916)

[93]

Borodich F M, Feng Z. Scaling of mathematical fractals and box-counting quasi-measure. Z Für Angew Math Und Phys 61(1): 21–31 (2010)

[94]

Borodich F M. Development of barenblatt’s scaling approaches in solid mechanics and nanomechanics. Phys Mesomech 22(1): 73–82 (2019)

[95]

Chen Q, Wang Y D, Zhou J J, Wu Y M, Song H. Research on characterization of anisotropic and isotropic processing surfaces by characteristic roughness. J Mater Process Technol 275: 116277 (2020)

[96]

Han B Y, Gao X H, Chen S Y, Cong M Q, Li R X, Liu X, Hang W X, Cui F F. Microstructure and tribological behavior of plasma spray Ni60 alloy coating deposited on ZL109 aluminum alloy substrate. Tribol Int 175: 107859 (2022)

[97]

Mahmood M A, Tsai T Y, Hwu Y J, Lin W J, Liu L, Lai J Y, Pan J W, Li W L, Lin J F. Effect of fractal parameters on optical properties of cold rolled aluminum alloy strips with induced surface deflection: Simulations and experimental correlations. J Mater Process Technol 279: 116554 (2020)

[98]

Mahmood M A, Han C F, Chu H Y, Sun C C, Wu W H, Lin W J, Liu L, Lai J Y, Mihailescu I N, Lin J F. Effects of roll pattern and reduction ratio on optical characteristics of A1008 cold–rolled steel specimens: Analytical approach and experimental correlations. Int J Adv Manuf Technol 111(7): 2001–2020 (2020)

[99]

Wang Y, Gang L, Liu S, Cui Y. Coupling fractal model for fretting wear on rough contact surfaces. J Tribol 143(9): 091701 (2021)

[100]

Joe J, Barber J R, Raeymaekers B. A general load–displacement relationship between random rough surfaces in elastic, non-adhesive contact, with application in metal additive manufacturing. Tribol Lett 70(3): 77 (2022)

[101]

Wolski M, Woloszynski T, Podsiadlo P, Stachowiak G W. Local directional fractal signature method for surface texture analysis. Tribol Lett 70(1): 15 (2022)

[102]

Zhang Y F, Lü Y J, Chen Z, Liu C, Zhao X W, Yang X L. A characterization method for the physical features of honed texture surface of engine cylinder liner. Tribol Int 186: 108634 (2023)

[103]

Li H J, Liu Y, Wang Y C, Liao H R. Estimation method of ideal fractal parameters for multi-scale measurement of polished surface topography. Fractal Fract 7(1): 17 (2022)

[104]

Wang H, Yang L, Tian A F, Huang B R. Fractal recognition and contact characteristics of ionic electroactive polymer interface based on microstructure analysis. Tribol Int 186: 108650 (2023)

[105]

Yang L, Wang H. Relationships between pretreatment methods and properties of ion-electroactive polymers based on image analysis technology. Tribol Int 180: 108270 (2023)

[106]
Borodich F M. Fractal nature of surfaces. In: Encyclopedia of Tribology. Wang Q J, Chung Y W, Eds. Boston: Springer, 2013: 1264–1269.
[107]
Borodich F M, Evans H P. Fractal characterization of surfaces. In: Encyclopedia of Tribology. Wang Q J, Chung Y W. Eds. Boston: Springer, 2013: 1246–1249.
[108]
Borodich F M, Bianchi D. Surface synthesis based on surface statistics. In: Encyclopedia of Tribology. Wang Q J, Chung Y W. Eds. Boston: Springer, 2013: 3472–3478.
[109]

Lu J L, Pan B F, Che T K, Sha D. Discrete element analysis of friction performance for tire-road interaction. Ind Lubr Tribol 72(7): 977–983 (2020)

[110]

Warren T L, Krajcinovic D. Fractal models of elastic-perfectly plastic contact of rough surfaces based on the Cantor set. Int J Solids Struct 32(19): 2907–2922 (1995)

[111]

Warren T L, Krajcinovic D. Random Cantor set models for the elastic-perfectly plastic contact of rough surfaces. Wear 196(1-2): 1–15 (1996)

[112]

Warren T L, Krajcinovic D. A fractal model for the static coefficient of friction at the fiber-matrix interface. Compos Part B Eng 27(5): 421–430 (1996)

[113]
Warren T L. A fractal approach to the micromechanics of interfacial failure. Ph. D. Thesis. Phoenix (USA): Arizona State University, 1995.
[114]

Warren T L, Majumdar A, Krajcinovic D. A fractal model for the rigid-perfectly plastic contact of rough surfaces. J Appl Mech 63(1): 47–54 (1996)

[115]

Ciavarella M, Demelio G, Barber J R, Jang Y H. Linear elastic contact of the Weierstrass profile. Proc R Soc A 456(1994): 387–405 (2000)

[116]

Zhang L, Wen J, Liu M, Xing G Z. A revised continuous observation length model of rough contact without adhesion. Mathematics 10(20): 3764 (2022)

[117]
Borodich F M. Fractal contact mechanics. In: Encyclopedia of Tribology. Wang Q J, Chung Y W, Eds. Boston: Springer, 2013: 1249–1258.
[118]
Bhushan B. Discussion: “A fractal theory of the temperature distribution at elastic contacts of fast sliding surfaces” (Wang, S. , and komvopoulos, K. , 1995, ASME J. tribol. , 117, pp. 203–214). J Tribol Trans ASME 117 : 214–215 (1995)
[119]
Bhushan B. Modern Tribology Handbook. Boca Raton (USA): CRC Press, 2001.
[120]

Liu Z F, Jiang K, Dong X M, Zhang C X, Tian Y, Hu Q S. A research method of bearing coefficient in fasteners based on the fractal and Florida theory. Tribol Int 152: 106544 (2020)

[121]

Li L, Tian H F, Yun Q Q, Chu W. Study on temperature rise distribution of contact surface under cyclic load. Proc Inst Mech Eng Part J J Eng Tribol 235(1): 138–148 (2021)

[122]

Wang N S, Liu H, Liu Y. Normal fractal contact stiffness model among three disks of rod-fastening rotor system with considering friction and the asperities interaction. Ind Lubr Tribol 73(4): 652–659 (2021)

[123]

Ruan J F, Wang X G, Wang Y M, Li C. Study on anti-scuffing load-bearing thermoelastic lubricating properties of meshing gears with contact interface micro-texture morphology. J Tribol 144(10): 101202 (2022)

[124]

Shi W B, Zhang Z S. Contact characteristic parameters modeling for the assembled structure with bolted joints. Tribol Int 165: 107272 (2022)

[125]

Nadimi S, Angelidakis V, Otsubo M, Ghanbarzadeh A. How can the effect of particle surface roughness on the contact area be predicted. Comput Geotech 150: 104890 (2022)

[126]

Zheng W, Sun J J, Ma C B, Yu Q P. Percolation interpretation of film pressure forming mechanism of mechanical seal and calculation method of film pressure coefficient. Tribol Int 173: 107664 (2022)

[127]

Peng D M, Li X Y. Fractal contact analysis for transversely isotropic piezoelectric materials: Theoretical and numerical predictions. Tribol Int 181: 108323 (2023)

[128]

Huang G C, Liu C, Xie W Z, Jiang D X. Normal contact stiffness model for fractal surfaces considering scale dependence and friction behavior. Proc Inst Mech Eng Part J J Eng Tribol 237(3): 527–540 (2023)

[129]

Panagouli O K, Mastrodimou K. Dependence of friction coefficient on the resolution of asperities in metallic rough surfaces under cyclic loading. Int J Solids Struct 108: 85–97 (2017)

[130]

Liao D, Shao W, Tang J, Li J. An improved rough surface modeling method based on linear transformation technique. Tribol Int 119: 786–794 (2018)

[131]

Panagouli O K, Margaronis K, Tsotoulidou V. A multiscale model for thermal contact conductance of rough surfaces under low applied pressure. Int J Solids Struct 200: 106–118 (2020)

[132]

Megalingam A, Hanumanth Ramji K S. A complete elastic−plastic spherical asperity contact model with the effect of isotropic strain hardening. Proc Inst Mech Eng Part J J Eng Tribol 235(4): 820–829 (2021)

[133]

Luan B Q, Robbins M O. Friction and plasticity in contacts between amorphous solids. Tribol Lett 69(2): 51 (2021)

[134]

Wen Y Q, Tang J Y, Zhou W, Li L, Zhu C C. New analytical model of elastic-plastic contact for three-dimensional rough surfaces considering interaction of asperities. Friction 10(2): 217–231 (2022)

[135]

Zhou W M, Cao Y T, Zhao H L, Li Z W, Feng P F, Feng F. Fractal analysis on surface topography of thin films: A review. Fractal Fract 6(3): 135 (2022)

[136]

Feng F, Liu B B, Zhang X S, Qian X, Li X H, Huang J L, Qu T M, Feng P F. Roughness scaling extraction method for fractal dimension evaluation based on a single morphological image. Appl Surf Sci 458: 489–494 (2018)

[137]

Feng F, Huang J L, Li X H, Qu T M, Liu B B, Zhou W M, Qian X, Feng P F. Influences of planarization modification and morphological filtering by AFM probe-tip on the evaluation accuracy of fractal dimension. Surf Coat Technol 363: 436–441 (2019)

[138]

Zhang Y L, Zhang X G, Jin Z M. Deterministic investigation of the contact behavior of nominally curved rough surfaces. Ind Lubr Tribol 72(6): 743–748 (2020)

[139]

Zhang L L, Yuan J L, He S, Huang S, Xiong S C, Shi T L, Xuan J P. Contact heat transfer analysis between mechanical surfaces based on reverse engineering and FEM. Tribol Int 161: 107097 (2021)

[140]

Zhou X, Chen Z, Gu C H, Wang J H. Thermo-mechanical coupling analysis of the end faces for a mechanical seal under dry friction. Tribol Int 160: 107050 (2021)

[141]

Yu X, Sun Y Y, Wu S J. Two-dimensional contact of asperities to multi-stage contact between curved fractal surfaces based on attitude angle. Tribol Int 189: 108989 (2023)

[142]

Wu B, Sun Y Y. Normal contact analysis between two self-affine fractal surfaces at the nanoscale by molecular dynamics simulations. Tribol Lett 71(2): 30 (2023)

[143]

Ta W R, Zhao H, Zhang X Y, Gao Y W, Zhou Y H. Rough contact surface reconstruction based on a mechanical-thermal contact model. Tribol Int 177: 107977 (2023)

[144]

Shang S F, Cao X S, Liu Z Q, Shi J P. Analysis of normal elastic contact stiffness of rough surfaces based on ubiquitiform theory. J Tribol 141(11): 111401 (2019)

[145]

Yang H, Che X, Yang C. Investigation of normal and tangential contact stiffness considering surface asperity interaction. Ind Lubr Tribol 72(3): 379–388 (2020)

[146]

Itzhak G. Exact spectral moments and differentiability of the Weierstrass–Mandelbrot fractal function. J Tribol 142(4): 041501 (2020)

[147]

Emami A, Khaleghian S, Taheri S. Asperity-based modification on theory of contact mechanics and rubber friction for self-affine fractal surfaces. Friction 9(6): 1707–1725 (2021)

[148]

Jiang K, Liu Z F, Yang C B, Zhang C X, Tian Y, Zhang T. Effects of the joint surface considering asperity interaction on the bolted joint performance in the bolt tightening process. Tribol Int 167: 107408 (2022)

[149]

Chen J, Di Liu, Wang C L, Zhang W Y, Zhu L B. A fractal contact model of rough surfaces considering detailed multi-scale effects. Tribol Int 176: 107920 (2022)

[150]

Xu M T, Zhang W M, Li C Y. Local subsidence behavior of linear guideway assembly resting on a rough elastic foundation. Tribol Int 189: 108941 (2023)

[151]

Liu H H, Sun W, Du D X, Liu X F, Ma H W. A novel bolted joint model with stick–slip hysteresis properties considering pressure-dependent stiffness: Theoretical and experimental investigations. Tribol Int 187: 108717 (2023)

[152]

Li T J, Wang M Z, Zhao C Y. Study on real-time thermal–mechanical–frictional coupling characteristics of ball bearings based on the inverse thermal network method. Proc Inst Mech Eng Part J J Eng Tribol 235(11): 2335–2349 (2021)

[153]

Zhang C X, Li X, He J L, Cheng Y H, Liu Z F, Li Y. Static friction coefficient model of joint surface based on the modified fractal model and experimental investigation. Int J Adv Manuf Technol 124(11): 4415–4429 (2023)

[154]

Fang X X, Tang W, Tang C Q, Zhang M M, Peng Y X. Study of stickiness perception of fabrics based on friction and ERP method. Tribol Lett 71(1): 23 (2023)

[155]

Xue Y, Shi X, Huang Q, Zhang K, Wu C. Tribological properties and lubrication state transitions of textured CSS-42L bushing filled with Sn–Ag–Cu–Ti3C2 of oil-film bearing. Proc Inst Mech Eng Part J 237(3): 621–635 (2023)

[156]

Wu C, Wang Y B, Chen F, Long X H. A mixed-lubricated friction model of water lubricated bearing based on fractal theory. Proc Inst Mech Eng Part J J Eng Tribol 237(10): 1913–1929 (2023)

[157]

Wang Y C, Azam A, Wilson M C, Neville A, Morina A. Generating fractal rough surfaces with the spectral representation method. Proc Inst Mech Eng Part J J Eng Tribol 235(12): 2640–2653 (2021)

[158]

Zhao J, Sheng W, Li Z, Zhang H, Zhu R P. Modeling and analysis of sliding wear based on fractal surface reconstruction in line contact mixed lubrication. Proc Inst Mech Eng Part J J Eng Tribol 236(12): 2507–2521 (2022)

[159]

Wei L, Choy Y S, Cheung C S, Jin D. Tribology performance, airborne particle emissions and brake squeal noise of copper-free friction materials. Wear 448: 203215 (2020)

[160]

Zhang W B, Gong W J, Chen Y X, Li M W. A new dual-mode wear model of abrasion–fatigue for plane (100Cr6)−cylinder (C45E4) steel pairs with fractal surfaces. Tribol Trans 64(6): 1095–1107 (2021)

[161]

Zhang Y S, Zhou C G, Ren S H, Qian C Q, Feng H T. An analysis method for the transmission efficiency of the preloaded ball screw based on wear volume calculation. Proc Inst Mech Eng Part J J Eng Tribol 236(12): 2392–2405 (2022)

[162]

Li L, Li G H, Wang J J, Fan C Q, Cai A J. Fretting wear mechanical analysis of double rough surfaces based on energy method. Proc Inst Mech Eng Part J J Eng Tribol 237(2): 356–368 (2023)

[163]

Lang S H, Zhu H, Wei C L. Study on the boundedness, stability and dynamic characteristics of friction system based on fractal and chaotic theory. Tribol Int 180: 108228 (2023)

[164]
Johnson K L. Contact Mechanics. Cambridge (UK): Cambridge University Press, 1985.
[165]
Hill R. The Mathematical Theory of Plasticity. Oxford (UK): Clarendon Press, 1950.
[166]

Chen Y P, Fu P P, Zhang C B, Shi M H. Numerical simulation of laminar heat transfer in microchannels with rough surfaces characterized by fractal Cantor structures. Int J Heat Fluid Flow 31(4): 622–629 (2010)

[167]

Abuzeid O M, Eberhard P. Linear viscoelastic creep model for the contact of nominal flat surfaces based on fractal geometry: Standard linear solid (SLS) material. J Tribol 129(3): 461–466 (2007)

[168]

Abuzeid O M, Alabed T A. Mathematical modeling of the thermal relaxation of nominally flat surfaces in contact using fractal geometry: Maxwell type medium. Tribol Int 42(2): 206–212 (2009)

[169]

Chen Y P, Zhang C B. Role of surface roughness on thermal conductance at liquid–solid interfaces. Int J Heat Mass Transf 78: 624–629 (2014)

[170]

Lu C J, Kuo M C. Coefficients of restitution based on a fractal surface model. J Appl Mech 70(3): 339–345 (2003)

[171]

Plesha M E, Ni D M. Scaling of geological discontinuity normal load–deformation response using fractal geometry. Int J Numer Anal Meth Geomech 25(8): 741–756 (2001)

[172]

Schmittbuhl J, Vilotte J P, Roux S. Velocity weakening friction: A renormalization approach. J Geophys Res Solid Earth 101(B6): 13911–13917 (1996)

[173]

Burridge R, Knopoff L. Model and theoretical seismicity. Bull Seismol Soc Am 57(3): 341–371 (1967)

[174]

Archard J F. Elastic deformation and the laws of friction. Proc R Soc Lond A 243(1233): 190–205 (1957)

[175]

Greenwood J A, Wu J J. Surface roughness and contact: An apology. Meccanica 36(6): 617–630 (2001)

[176]

Borodich F M, Onishchenko D A. Similarity and fractality in the modelling of roughness by a multilevel profile with hierarchical structure. Int J Solids Struct 36(17): 2585–2612 (1999)

[177]

Gao H J, Wang X, Yao H M, Gorb S, Arzt E. Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37(2–3): 275–285 (2005)

[178]
Yao H M, Gao H J. Mechanics of self-similar hierarchical adhesive structures inspired by gecko feet. In: Structural Interfaces and Attachments in Biology. Thomopoulos S, Birman V, Genin G, Eds. New York: Springer, 2013: 201–226.
[179]

Tian Y, Wan J, Pesika N, Zhou M. Bridging nanocontacts to macroscale gecko adhesion by sliding soft lamellar skin supported setal array. Sci Rep 3: 1382 (2013)

[180]

Schaber C F, Flenner S, Glisovic A, Krasnov I, Rosenthal M, Stieglitz H, Krywka C, Burghammer M, Müller M, Gorb S N. Hierarchical architecture of spider attachment setae reconstructed from scanning nanofocus X-ray diffraction data. J R Soc Interface 16(150): 20180692 (2019)

[181]

Wolff J O, Schwaha T, Seiter M, Gorb S N. Whip spiders (Amblypygi) become water-repellent by a colloidal secretion that self-assembles into hierarchical microstructures. Zool Lett 2(1): 23 (2016)

[182]

Wolff J O, Grawe I, Wirth M, Karstedt A, Gorb S N. Spider’s super-glue: Thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 11(12): 2394–2403 (2015)

[183]

Spinner M, Kovalev A, Gorb S N, Westhoff G. Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros. Sci Rep 3: 1846 (2013)

[184]

Borodich F M, Galanov B A, Perepelkin N V, Prikazchikov D A. Adhesive contact problems for a thin elastic layer: Asymptotic analysis and the JKR theory. Math Mech Solids 24(5): 1405–1424 (2019)

[185]
Borodich F M, Savencu O. Hierarchical models of engineering rough surfaces and bio-inspired Adhesives. In: Bio-inspired Structured Adhesives: Biological Prototypes, Fabrication, Tribological Properties, Contact Mechanics, and Novel Concepts. Heepe L, Xue L, Gorb S N, Eds. Cham: Springer International Publishing, 2017: 179–219.
[186]

Almuramady N, Borodich F M, Goryacheva I G, Torskaya E V. Damage of functionalized self-assembly monomolecular layers applied to silicon microgear MEMS. Tribol Int 129: 202–213 (2019)

[187]

Zhuravlev V A. On the question of theoretical justification of the Amontons−Coulomb law for friction of unlubricated surfaces. Journal of Technical Physics 10(17): 1447–1452 (1940)

[188]

Zhuravlev V A. On the question of theoretical justification of the Amontons−Coulomb law for friction of unlubricated surfaces. Proc Inst Mech Eng Part J J Eng Tribol 221(8): 893–898 (2007)

[189]

Greenwood J, Williamson J. Contact of nominally flat surfaces. Proc R Soc Lond Ser A Math Phys Sci 295: 300–319 (1966)

Friction
Cite this article:
Borodich FM, Gao Z, Jin X. Fractal models in tribology: A critical review. Friction, 2025, https://doi.org/10.26599/FRICT.2025.9440945

442

Views

85

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 January 2024
Revised: 08 April 2024
Accepted: 29 May 2024
Published: 21 January 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).

Return