Friction and wear of metallic materials are ubiquitous in modern life, resulting in significant energy consumption and property damage. The tribological performance of metallic materials is strongly affected by their surface characteristics, motivating the rapid development of surface treatment technology. As a simple method without changing the matrix composition, mechanically induced surface nanocrystallization has emerged as a promising strategy to achieve reduced friction coefficients and increased wear resistance for metals. This review highlights the systemic progress and prospects of mechanically induced surface nanocrystallization, emphasizing its ability to mitigate friction and wear in metals. This review begins by presenting various processing techniques for preparing surface nanostructures, followed by an in-depth discussion of the mechanisms of mechanically induced surface nanocrystallization and the effects of processing techniques and their parameters on surface nanocrystallization. Then, several methods for stabilizing nanocrystalline (NC) structures are briefly introduced. Furthermore, this review thoroughly examines the influence of surface nanocrystallization on the tribological properties and the underlying mechanisms. Finally, the potential applications and challenges of surface nanostructured configurations in friction- and wear-related fields are thoroughly discussed.
Whitehead J R. Surface deformation and friction of metals at light loads. Proc R Soc Lon Ser A 201(1064): 109–124 (1950)
Goddard J, Wilman H. A theory of friction and wear during the abrasion of metals. Wear 5(2): 114–135 (1962)
Antler M. Wear and friction of the platinum metals. Performance in sliding contacts. Platinum Met Rev 10(1): 2–8 (1966)
Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 5(3): 263–284 (2017)
Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol Int 47: 221–234 (2012)
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 488(7411): 294–303 (2012)
Wang Z Q, Ye R H, Xiang J B. The performance of textured surface in friction reducing: A review. Tribol Int 177: 108010 (2023)
Li X Y, Lu L, Li J G, Zhang X, Gao H J. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat Rev Mater 5: 706–723 (2020)
Olugbade T O, Lu J. Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT). Nano Mater Sci 2(1): 3–31 (2020)
Acharya S, Suwas S, Chatterjee K. Review of recent developments in surface nanocrystallization of metallic biomaterials. Nanoscale 13(4): 2286–2301 (2021)
Lawal J, Kiryukhantsev-Korneev P, Matthews A, Leyland A. Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings. Surf Coat Tech 310: 59–69 (2017)
Corona-Gomez J, Yang Q. Wear and corrosion characterization of single and multilayered nanocrystalline tantalum coatings on biomedical grade CoCrMo alloy. Materialia 24: 101518 (2022)
Abreu C S, Amaral M, Oliveira F J, Gomes J R, Silva R F. HFCVD nanocrystalline diamond coatings for tribo-applications in the presence of water. Diam Relat Mater 18(2–3): 271–275 (2009)
Cao Y N, Xia Y Q, Duan B Y, Mu W X, Tan X, Wu H. Microstructure evolution and anti-wear mechanism of Cu film fabricated by magnetron sputtering deposition. Mater Lett 315: 131941 (2022)
Shahrezaei S, Sun Y W, Mathaudhu S N. Strength-ductility modulation via surface severe plastic deformation and annealing. Mater Sci Eng A 761: 138023 (2019)
Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J Mater Sci Technol 15: 193–197 (2009)
Liu J L, Umemoto M, Todaka Y, Tsuchiya K. Formation of a nanocrystalline surface layer on steels by air blast shot peening. J Mater Sci 42(18): 7716–7720 (2007)
Bagheri S, Guagliano M. Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys. Surf Eng 25(1): 3–14 (2009)
Peral L B, Quintero A, Vielma A T, Barbés M F, Fernández-Pariente I. TEM evaluation of steel nanocrystalline surfaces obtained by severe shot peening. Surf Coat Tech 418: 127238 (2021)
Umemoto M. Nanocrystallization of steels by severe plastic deformation. Mater Trans 44(10): 1900–1911 (2003)
Palacios M, Bagherifard S, Guagliano M, Fernández Pariente I. Influence of severe shot peening on wear behaviour of an aluminium alloy. Fatigue Fract Eng M 37(7): 821–829 (2014)
Ma G Z, Xu B S, Wang H D, Si H J. Effects of surface nanocrystallization pretreatment on low-temperature ion sulfurization behavior of 1Cr18Ni9Ti stainless steel. Appl Surf Sci 257(4): 1204–1210 (2010)
Ma G Z, Xu B S, Wang H D, Si H J, Yang D X. Effect of surface nanocrystallization on the tribological properties of 1Cr18Ni9Ti stainless steel. Mater Lett 65(9): 1268–1271 (2011)
Chen X P, Zhang L F, Xiong Y, Yao H, Ren F Z, Zhang J. Effects of supersonic fine particle bombardment on the microstructure and corrosion properties of Ti–6Al–3Nb–2Zr–1Mo alloy. Surf Coat Tech 459: 129383 (2023)
Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP. Acta Mater 50(8): 2075–2084 (2002)
Zhu L H, Guan Y J, Wang Y J, Xie Z D, Lin J. Influence of process parameters of ultrasonic shot peening on surface nanocrystallization and hardness of pure titanium. Int J Adv Manuf Tech 89(5): 1451–1468 (2017)
Zhu L H, Guan Y J, Lin J, Zhai J Q, Xie Z D. A nanocrystalline-amorphous mixed layer obtained by ultrasonic shot peening on pure titanium at room temperature. Ultrason Sonochem 47: 68–74 (2018)
Malaki M, Ding H T. A review of ultrasonic peening treatment. Mater Design 87: 1072–1086 (2015)
Mordyuk B N, Prokopenko G I. Fatigue life improvement of α-titanium by novel ultrasonically assisted technique. Mater Sci Eng A 437(2): 396–405 (2006)
Mordyuk B N, Prokopenko G I. Ultrasonic impact peening for the surface properties’ management. J Sound Vib 308(3–5): 855–866 (2007)
Liu C, Shen J B, Lin C H, Wang J F, Wang J X. Experimental investigation on the subsurface stress distributions in specimens with different strengths after ultrasonic impact treatment. J Mech Sci Technol 35(5): 2123–2129 (2021)
Mordyuk B N, Dekhtyar A I, Savvakin D G, Khripta N I. Tailoring porosity and microstructure of alpha-titanium by combining powder metallurgy and ultrasonic impact treatment to control elastic and fatigue properties. J Mater Eng Perform 31(7): 5668–5678 (2022)
Li W L, Tao N R, Lu K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Mater 59(5): 546–549 (2008)
El-Tayeb N S M, Low K O, Brevern P V. On the surface and tribological characteristics of burnished cylindrical Al-6061. Tribol Int 42(2): 320–326 (2009)
Yilmaz H, Sadeler R. Impact wear behavior of ball burnished 316L stainless steel. Surf Coat Tech 363: 369–378 (2019)
Attabi S, Himour A, Laouar L, Motallebzadeh A. Mechanical and wear behaviors of 316L stainless steel after ball burnishing treatment. J Mater Res Technol 15: 3255–3267 (2021)
Revankar G D, Shetty R, Rao S S, Gaitonde V N. Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process. J Mater Res Technol 6(1): 13–32 (2017)
Jagadeesh G V, Gangi Setti S. A review on latest trends in ball and roller burnishing processes for enhancing surface finish. Adv Mater Res 8(4): 4499–4523 (2022)
Tang J, Luo H Y, Zhang Y B. Enhancing the surface integrity and corrosion resistance of Ti–6Al–4V titanium alloy through cryogenic burnishing. Int J Adv Manuf Techl 88(9): 2785–2793 (2017)
Jerez-Mesa R, Travieso-Rodriguez J A, Gomez-Gras G, Lluma-Fuentes J. Development, characterization and test of an ultrasonic vibration-assisted ball burnishing tool. J Mater Process Tech 257: 203–212 (2018)
Shi Y L, Shen X H, Xu G F, Xu C H, Wang B L, Su G S. Surface integrity enhancement of austenitic stainless steel treated by ultrasonic burnishing with two burnishing tips. Arch Civ Mech Eng 20(3): 79 (2020)
Kovács Z F, Viharos Z J, Kodácsy J. Improvements of surface tribological properties by magnetic assisted ball burnishing. Surf Coat Tech 437: 128317 (2022)
Wang T, Wang D P, Liu G, Gong B M, Song N X. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing. Appl Surf Sci 255(5): 1824–1829 (2008)
Liu Y, Zhao X H, Wang D P. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation. Mater Sci Eng A 600: 21–31 (2014)
Yin M G, Cai Z B, Zhang Z X, Yue W. Effect of ultrasonic surface rolling process on impact-sliding wear behavior of the 690 alloy. Tribol Int 147: 105600 (2020)
Wu J X, Deng J X, Lu Y, Zhang Z H, Meng Y, Wang R, Sun Q H. Effect of textures fabricated by ultrasonic surface rolling on dry friction and wear properties of GCr15 steel. J Manuf Process 84: 798–814 (2022)
Chen D S, Mao X Q, Ou M G, Liang Y. Mechanical properties of gradient structured copper obtained by ultrasonic surface rolling. Surf Coat Tech 431: 128031 (2022)
Zou Y, Li J K, Liu X, He T T, Lu J S, Li D L, Li Y. Effect of multiple ultrasonic nanocrystal surface modification on surface integrity and wear property of DZ2 axle steel. Surf Coat Tech 412: 127012 (2021)
Chui P F, Sun K N, Sun C, Wu C G, Wang H Y, Zhao Y. Effect of surface nanocrystallization induced by fast multiple rotation rolling on mechanical properties of a low carbon steel. Mater Design 35: 754–759 (2012)
Huang H W, Wang Z B, Lu J, Lu K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater 87: 150–160 (2015)
Fu H, Zhou X Y, Wu B, Qian L, Yang X S. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique. J Mater Sci Technol 82: 227–238 (2021)
Wu B, Fu H, Zhou X Y, Qian L, Luo J S, Zhu J M, Lee W B, Yang X S. Severe plastic deformation-produced gradient nanostructured copper with a strengthening-softening transition. Mater Sci Eng A 819: 141495 (2021)
Altenberger I, Scholtes B, Martin U, Oettel H. Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Mater Sci Eng A 264(1–2): 1–16 (1999)
Guo Y S, Jia B, Zhou Q, Liu R, Arab A, Chen W, Ren Y P, Ran C, Chen P W. Shock induced gradient microstructure with hierarchical nanotwins to enhance mechanical properties of Ti6Al4V alloy. J Mater Process Tech 307: 117693 (2022)
Eckner R, Krüger L, Ullrich C, Rafaja D, Schlothauer T, Heide G. Microstructure and mechanical properties after shock wave loading of cast CrMnNi TRIP steel. Metall Mater Trans A 47(10): 4922–4932 (2016)
Zhang Y S, Wei Q M, Niu H Z, Li Y S, Chen C, Yu Z T, Bai X F, Zhang P X. Formation of nanocrystalline structure in tantalum by sliding friction treatment. Int J Refract Met H 45: 71–75 (2014)
Chen Y X, Yang Y Q, Feng Z Q, Zhao G M, Huang B, Luo X, Zhang Y S, Zhang W. Microstructure, microtexture and precipitation in the ultrafine-grained surface layer of an Al–Zn–Mg–Cu alloy processed by sliding friction treatment. Mater Charact 123: 189–197 (2017)
Zheng G Y, Luo X, Yang Y Q, Kou Z D, Huang B, Zhang Y S, Zhang W. The gradient structure in the surface layer of an Al–Zn–Mg–Cu alloy subjected to sliding friction treatment. Results Phys 13: 102318 (2019)
Deng S Q, Godfrey A, Liu W, Hansen N. A gradient nanostructure generated in pure copper by platen friction sliding deformation. Scripta Mater 117: 41–45 (2016)
Chen W, You Z S, Tao N R, Jin Z H, Lu L. Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Mater 125: 255–264 (2017)
Cheng Z, Zhou H F, Lu Q H, Gao H J, Lu L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 362(6414): eaau1925 (2018)
Liu X C, Zhang H W, Lu K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater 96: 24–36 (2015)
Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater 50(18): 4603–4616 (2002)
Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP. Acta Mater 50(8): 2075–2084 (2002)
Liu X C, Zhang H W, Lu K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater 96: 24–36 (2015)
Wu X, Tao N, Hong Y, Liu G, Xu B, Lu J, Lu K. Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Mater 53(3): 681–691 (2005)
Wang K, Tao N R, Liu G, Lu J, Lu K. Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater 54(19): 5281–5291 (2006)
Liu X W, Sun L G, Zhu L L, Liu J B, Lu K, Lu J. High-order hierarchical nanotwins with superior strength and ductility. Acta Mater 149: 397–406 (2018)
Zhang H W, Hei Z K, Liu G, Lu J, Lu K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater 51(7): 1871–1881 (2003)
Xin C, Sun Q Y, Xiao L, Sun J. Biaxial fatigue property enhancement of gradient ultra-fine-grained zircaloy-4 prepared by surface mechanical rolling treatment. J Mater Sci 53(17): 12492–12503 (2018)
Zhu K Y, Vassel A, Brisset F, Lu K, Lu J. Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater 52(14): 4101–4110 (2004)
Sun H Q, Shi Y N, Zhang M X, Lu K. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Mater 55(3): 975–982 (2007)
Liu X C, Zhang H W, Lu K. Formation of nanolaminated structure in an interstitial-free steel. Scripta Mater 95: 54–57 (2015)
Asano M, Yuasa M, Miyamoto H. Effects of stacking fault energy and solute atoms on microstructural evolution of Cu, Ag and Cu–Al alloys processed by equal channel angular pressing. Mater Sci Eng A 803: 140716 (2021)
Liu H, Gao B, Yang Y, Xu M N, Li X F, Li C, Pan H J, Yang J R, Zhou H, Zhu X K, et al. Strain hardening behavior and microstructure evolution of gradient-structured Cu–Al alloys with low stack fault energy. J Mater Res Technol 19: 220–229 (2022)
Murr L E. Stacking-fault anomalies and the measurement of stacking-fault free energy in f. c. c. thin films. Thin Solid Films 4(6): 389–412 (1969)
Tao N R, Wu X L, Sui M L, Lu J, Lu K. Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy. J Mater Res 19(6): 1623–1629 (2004)
Gao Y B, Li X Y, Ma Y J, Kitchen M, Ding Y T, Luo Q S. Formation mechanism and wear behavior of gradient nanostructured Inconel 625 alloy. T Nonferr Metal Soc 32(6): 1910–1925 (2022)
Molnár D, Sun X, Lu S, Li W, Engberg G, Vitos L. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel. Mater Sci Eng A 759: 490–497 (2019)
Lei Y B, Wang Z B, Xu J L, Lu K. Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure. Acta Mater 168: 133–142 (2019)
Shi X Y, Liu Y, Li D J, Chen B, Zeng X Q, Lu J, Ding W J. Microstructure evolution and mechanical properties of an Mg–Gd alloy subjected to surface mechanical attrition treatment. Mater Sci Eng A 630: 146–154 (2015)
Zhang Y S, Han Z, Wang K, Lu K. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260(9–10): 942–948 (2006)
Zhang Y S, Wang K, Han Z, Liu G. Dry sliding wear behavior of copper with nano-scaled twins. Wear 262(11–12): 1463–1470 (2007)
Chen H, Guan Y J, Zhu L H, Li Y, Zhai J Q, Lin J. Effects of ultrasonic shot peening process parameters on nanocrystalline and mechanical properties of pure copper surface. Mater Chem Phys 259: 124025 (2021)
Zhang Y S, Zhang P X, Niu H Z, Chen C, Wang G, Xiao D H, Chen X H, Yu Z T, Yuan S B, Bai X F. Surface nanocrystallization of Cu and Ta by sliding friction. Mater Sci Eng A 607: 351–355 (2014)
Liu H, Gao B, Yang Y, Xu M N, Li X F, Li C, Pan H J, Yang J R, Zhou H, Zhu X K, et al. Strain hardening behavior and microstructure evolution of gradient-structured Cu–Al alloys with low stack fault energy. J Mater Res Technol 19: 220–229 (2022)
Chen X, Han Z, Li X Y, Lu K. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci Adv 2(12): 1601942 (2016)
Amanov A, Pyun Y S, Sasaki S. Effects of ultrasonic nanocrystalline surface modification (UNSM) technique on the tribological behavior of sintered Cu-based alloy. Tribol Int 72: 187–197 (2014)
Hu T, Wen C S, Sun G Y, Wu S L, Chu C L, Wu Z W, Li G Y, Lu J, Yeung K W K, Chu P K. Wear resistance of NiTi alloy after surface mechanical attrition treatment. Surf Coat Tech 205(2): 506–510 (2010)
Anand Kumar S, Ganesh Sundara Raman S, Sankara Narayanan T S N, Gnanamoorthy R. Fretting wear behaviour of surface mechanical attrition treated alloy 718. Surf Coat Tech 206(21): 4425–4432 (2012)
Liu J B, Zhang X H, Cui Z Y, Ahmad T, Wang C M, Hong N, Liang T X, Yang B. Effects of ultrasonic surface rolling processing and plasma nitriding on the fretting wear behavior of Inconel 690TT. Surf Coat Tech 402: 126312 (2020)
Prakash N A, Gnanamoorthy R, Kamaraj M. Friction and wear behavior of surface nanocrystallized aluminium alloy under dry sliding condition. Mater Sci Eng B 168(1–3): 176–181 (2010)
Wen L, Wang Y M, Zhou Y, Guo L X, Ouyang J H. Iron-rich layer introduced by SMAT and its effect on corrosion resistance and wear behavior of 2024 Al alloy. Mater Chem Phys 126(1–2): 301–309 (2011)
Chen C, Zhang H J. Characteristics of friction and wear of Al–Zn–Mg–Cu alloy after application of ultrasonic shot peening technology. Surf Coat Tech 423: 127615 (2021)
Zheng G Y, Luo X, Kou Z D, Liu Z L, Huang B, Yang Y Q. Thermal stability of nanocrystalline surface layer in an aged Al–Zn–Mg–Cu alloy induced by ultrasonic surface rolling processing. Mater Charact 199: 112776 (2023)
Liu H B, Jiang C H, Chen M, Wang L B, Ji V. Surface layer microstructures and wear properties modifications of Mg–8Gd–3Y alloy treated by shot peening. Mater Charact 158: 109952 (2019)
Sun H Q, Shi Y N, Zhang M X. Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer. Surf Coat Tech 202(13): 2859–2864 (2008)
Laleh M, Kargar F. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. J Alloys Compd 509(37): 9150–9156 (2011)
Liu Y, Jin B, Li D J, Zeng X Q, Lu J. Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment. Surf Coat Tech 261: 219–226 (2015)
Xia S W, Liu Y, Fu D M, Jin B, Lu J. Effect of surface mechanical attrition treatment on tribological behavior of the AZ31 alloy. J Mater Sci Technol 32(12): 1245–1252 (2016)
Duan M, Luo L, Liu Y. Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient. J Alloys Compd 823: 153691 (2020)
Zhang J Y, Jian Y X, Zhao X Z, Meng D A, Pan F S, Han Q Y. The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment. J Magnes Alloys 9(5): 1187–1200 (2021)
Gong L C, Pan Y Z, Peng C, Fu X L, Jiang Z F, Jiang S. Effect of ultrasonic surface rolling processing on wear properties of Cr12MoV steel. Mater Today Commun 33: 104762 (2022)
Wang P F, Han Z. Friction and wear behaviors of a gradient nano-grained AISI 316L stainless steel under dry and oil-lubricated conditions. J Mater Sci Technol 34(10): 1835–1842 (2018)
Zhang K, Wang Z B, Lu K. Enhanced fatigue property by suppressing surface cracking in a gradient nanostructured bearing steel. Mater Res Lett 5(4): 258–266 (2017)
Wen M, Wen C, Hodgson P D, Li Y C. Tribological behaviour of pure Ti with a nanocrystalline surface layer under different loads. Tribol Lett 45(1): 59–66 (2012)
Alikhani Chamgordani S, Miresmaeili R, Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP–Ti) by surface mechanical attrition treatment (SMAT). Tribol Int 119: 744–752 (2018)
Wang Y P, Li Y, Sun K N. Effect of process duration on the microstructures of fast multiple rotation rolling-induced nanocrystalline layer and its wear properties. J Mater Process Tech 252: 159–166 (2018)
Zhang C W, Fu T L, Chen H Y, Gao Y. Microstructure evolution of surface gradient nanocrystalline by shot peening of TA17 titanium alloy. Metall Mater Trans A 52(5): 1790–1798 (2021)
Dai K, Shaw L. Comparison between shot peening and surface nanocrystallization and hardening processes. Mater Sci Eng A 463(1–2): 46–53 (2007)
Zheng H Z, Guo S H, Luo Q H, Shu X Y, Li G F. Effect of shot peening on microstructure, nanocrystallization and microhardness of Ti–10V–2Fe–3Al alloy surface. J Iron Steel Res Int 26(1): 52–58 (2019)
Kang L Z, Mi X, Zhang X F, Xin L, Lu Y H, Shoji T. Detail characterization on the microstructure evolution of nickel-base alloy 600MA via surface mechanical attrition treatment. Mater Charact 195: 112498 (2023)
Gertsman V Y, Birringer R. On the room-temperature grain growth in nanocrystalline copper. Scripta Metall Mater 30(5): 577–581 (1994)
Ames M, Markmann J, Karos R, Michels A, Tschöpe A, Birringer R. Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater 56(16): 4255–4266 (2008)
Liang N N, Zhao Y H. A review on thermal stability of nanostructured materials. J Alloys Compd 938: 168528 (2023)
Schuh C A, Lu K. Stability of nanocrystalline metals: The role of grain-boundary chemistry and structure. MRS Bull 46(3): 225–235 (2021)
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater 1(5): 16019 (2016)
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342(6156): 337–340 (2013)
Weissmüller J. Alloy effects in nanostructures. Nanostruct Mater 3(1–6): 261–272 (1993)
Hu J, Shi Y N, Sauvage X, Sha G, Lu K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355(6331): 1292–1296 (2017)
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys. Science 337(6097): 951–954 (2012)
Darling K A, VanLeeuwen B K, Koch C C, Scattergood R O. Thermal stability of nanocrystalline Fe–Zr alloys. Mater Sci Eng A 527(15): 3572–3580 (2010)
Xu W, Liu X C, Li X Y, Lu K. Deformation induced grain boundary segregation in nanolaminated Al–Cu alloy. Acta Mater 182: 207–214 (2020)
Zhang Y, Tucker G J, Trelewicz J R. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying. Acta Mater 131: 39–47 (2017)
Lu P, Abdeljawad F, Rodriguez M, Chandross M, Adams D P, Boyce B L, Clark B G, Argibay N. On the thermal stability and grain boundary segregation in nanocrystalline PtAu alloys. Materialia 6: 100298 (2019)
Xu X F, Li X Y, Zhang B. Stabilizing nanograined Fe–Cr alloy by Si-assisted grain boundary segregation. J Mater Sci Technol 134: 223–233 (2023)
Chakravarty S, Sikdar K, Singh S S, Roy D, Koch C C. Grain size stabilization and strengthening of cryomilled nanostructured Cu 12at% Al alloy. J Alloys Compd 716: 197–203 (2017)
Atwater M A, Roy D, Darling K A, Butler B G, Scattergood R O, Koch C C. The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater Sci Eng A 558: 226–233 (2012)
Darling K A, Roberts A J, Mishin Y, Mathaudhu S N, Kecskes L J. Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. J Alloys Compd 573: 142–150 (2013)
Zhou X, Li X Y, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size. Science 360(6388): 526–530 (2018)
Zhou X, Li X Y, Lu K. Size dependence of grain boundary migration in metals under mechanical loading. Phys Rev Lett 122(12): 126101 (2019)
Jiang Y, Zhou X, Li X Y, Lu K. Stabilizing nanograined austenitic stainless steel with grain boundary relaxation. Acta Mater 256: 119134 (2023)
Xu W, Zhang B, Du K, Li X Y, Lu K. Thermally stable nanostructured Al–Mg alloy with relaxed grain boundaries. Acta Mater 226: 117640 (2022)
Ma X L, Olszta M, Liu J, Song M, Pole M, Pallaka M R, Silverstein J, Escobar J, Bhattacharjee A J, Mukherjee S, et al. Temperature-dependent formation of gradient structures with anomalous hardening in an Al–Si alloy. Mater Sci Eng A 858: 144061 (2022)
Chen X, Han Z, Lu K. Friction and wear reduction in copper with a gradient nano-grained surface layer. ACS Appl Mater Inter 10(16): 13829–13838 (2018)
Amanov A, Cho I S, Pyun Y S. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique. Appl Surf Sci 388: 185–195 (2016)
Liang F, Xu X X, Wang P F, Zhang Y P, Han Z, Chen X. Microstructural origin of high scratch resistance in a gradient nanograined 316L stainless steel. Scripta Mater 220: 114895 (2022)
Wang P, Guo H, Wang D F, Duan H T, Zhang Y Z. Microstructure and tribological performances of M50 bearing steel processed by ultrasonic surface rolling. Tribol Int 175: 107818 (2022)
Mao X Y, Sun J Y, Feng Y Y, Zhou X M, Zhao X M. High-temperature wear properties of gradient microstructure induced by ultrasonic impact treatment. Mater Lett 246: 178–181 (2019)
Çakir F H, Öteyaka M Ö, Er Ü, Bozkurt F. Enhancing wear resistance of AISI 304 alloy with shot peening and investigation of corrosion behaviour in marine water. Trans IMF 99(4): 194–202 (2021)
Sun H Q, Shi Y N, Zhang M X. Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy. Wear 266(7–8): 666–670 (2009)
Amanov A, Cho I S, Kim D E, Pyun Y S. Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification. Surf Coat Tech 207: 135–142 (2012)
Ma X L, Gwalani B, Tao J H, Efe M, Olszta M, Song M, Yadav S, Yu A Q, Nizolek T J, Carpenter J S, et al. Shear strain gradient in Cu/Nb nanolaminates: Strain accommodation and chemical mixing. Acta Mater 234: 117986 (2022)
Xia W Z, Patil P P, Liu C, Dehm G, Brinckmann S. A novel microwall sliding test uncovering the origin of grain refined tribolayers. Acta Mater 246: 118670 (2023)
Rigney D A, Karthikeyan S. The evolution of tribomaterial during sliding: A brief introduction. Tribol Lett 39(1): 3–7 (2010)
Shakhvorostov D, Gleising B, Büscher R, Dudzinski W, Fischer A, Scherge M. Microstructure of tribologically induced nanolayers produced at ultra-low wear rates. Wear 263(7–12): 1259–1265 (2007)
Chandross M, Curry J F, Babuska T F, Lu P, Furnish T A, Kustas A B, Nation B L, Staats W L, Argibay N. Shear-induced softening of nanocrystalline metal interfaces at cryogenic temperatures. Scripta Mater 143: 54–58 (2018)
Shakhvorostov D, Pöhlmann K, Scherge M. Structure and mechanical properties of tribologically induced nanolayers. Wear 260(4–5): 433–437 (2006)
Jones M R, Nation B L, Wellington-Johnson J A, Curry J F, Kustas A B, Lu P, Chandross M, Argibay N. Evidence of inverse hall-petch behavior and low friction and wear in high entropy alloys. Sci Rep-UK 10: 10151 (2020)
Prasad S V, Battaile C C, Kotula P G. Friction transitions in nanocrystalline nickel. Scripta Mater 64(8): 729–732 (2011)
Chandross M, Argibay N. Friction of metals: A review of microstructural evolution and nanoscale phenomena in shearing contacts. Tribol Lett 69(4): 119 (2021)
Argibay N, Chandross M, Cheng S, Michael J R. Linking microstructural evolution and macro-scale friction behavior in metals. J Mater Sci 52(5): 2780–2799 (2017)
Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3: 43–47 (2004)
Hinkle A R, Curry J F, Lim H, Nation B L, Jones M R, Wellington-Johnson J, Lu P, Argibay N, Chandross M. Low friction in bcc metals via grain boundary sliding. Phys Rev Materials 4(6): 063602 (2020)
Cihan E, Störmer H, Leiste H, Stüber M, Dienwiebel M. Low friction of metallic multilayers by formation of a shear-induced alloy. Sci Rep-UK 9: 9480 (2019)
Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness. Mater Sci Eng A 529: 62–73 (2011)
Archard J F. Contact and rubbing of flat surfaces. J Appl Phys 24(8): 981–988 (1953)
Chen X, Han Z, Lu K. Wear mechanism transition dominated by subsurface recrystallization structure in Cu–Al alloys. Wear 320: 41–50 (2014)
Zhang K, Weertman J R, Eastman J A. Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl Phys Lett 87(6): 061921 (2005)
Pan D, Kuwano S, Fujita T, Chen M W. Ultra-large room-temperature compressive plasticity of a nanocrystalline metal. Nano Lett 7(7): 2108–2111 (2007)
Fang T H, Li W L, Tao N R, Lu K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024): 1587–1590 (2011)
Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Solids 46(3): 411–425 (1998)
Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4): 427–556 (2006)
Argibay N, Furnish T A, Boyce B L, Clark B G, Chandross M. Stress-dependent grain size evolution of nanocrystalline Ni–W and its impact on friction behavior. Scripta Mater 123: 26–29 (2016)
Chandross M, Argibay N. Ultimate strength of metals. Phys Rev Lett 124(12): 125501 (2020)
Frøseth A G, Derlet P M, Van Swygenhoven H. Dislocations emitted from nanocrystalline grain boundaries: Nucleation and splitting distance. Acta Mater 52(20): 5863–5870 (2004)
Shafiei M, Alpas A T. Effect of sliding speed on friction and wear behaviour of nanocrystalline nickel tested in an argon atmosphere. Wear 265(3–4): 429–438 (2008)
Rupert T J, Gianola D S, Gan Y, Hemker K J. Experimental observations of stress-driven grain boundary migration. Science 326(5960): 1686–1690 (2009)
Kang X, Sun Y, Zhang L. Self-lubricating and high wear resistance mechanism of silver matrix self-lubricating nanocomposite in high vacuum. Vacuum 182: 109768 (2020)
Torres H, Rodríguez Ripoll M, Prakash B. Tribological behaviour of self-lubricating materials at high temperatures. Int Mater Rev 63(5): 309–340 (2018)
Kang X, Zhang L. Enhanced sliding electrical contact properties of silver matrix self-lubricating nanocomposite using molecular level mixing process and spark plasma sintering. Powder Technol 372: 94–106 (2020)
Sun Y, Wu J S, Zhang L. Fabrication of Ag–WS2 composites with preferentially oriented WS2 and its anisotropic tribology behavior. Mater Lett 260: 126975 (2020)
Zhang X, Zhang K, Kang X, Zhang L. Friction maps and wear maps of Ag/MoS2/WS2 nanocomposite with different sliding speed and normal force. Tribol Int 164: 107228 (2021)
Kang X, Yu S, Yang H L, Sun Y, Zhang L. Tribological behavior and microstructural evolution of lubricating film of silver matrix self-lubricating nanocomposite. Friction 9(5): 941–951 (2021)
Sun Y, Wang Y, Li Y, Zhou K C, Zhang L. Tribological behaviors of Ag–graphite composites reinforced with spherical graphite. T Nonferr Metal Soc 30(8): 2177–2187 (2020)
Amanov A, Cho I S, Kim D E. Effectiveness of high-frequency ultrasonic peening treatment on the tribological characteristics of Cu-based sintered materials on steel substrate. Mater Design 45: 118–124 (2013)
Bobzin K, Bagcivan N, Goebbels N, Yilmaz K, Hoehn B R, Michaelis K, Hochmann M. Lubricated PVD CrAlN and WC/C coatings for automotive applications. Surf Coat Tech 204(6-7): 1097–1101 (2009)
Wan S H, Li D S, Zhang G A, Tieu A K, Zhang B. Comparison of the scuffing behaviour and wear resistance of candidate engineered coatings for automotive piston rings. Tribol Int 106: 10–22 (2017)
Ferreira R, Carvalho Ó, Sobral L, Carvalho S, Silva F. Influence of morphology and microstructure on the tribological behavior of arc deposited CrN coatings for the automotive industry. Surf Coat Tech 397: 126047 (2020)
Wan S H, Pu J B, Li D S, Zhang G A, Zhang B, Tieu A K. Tribological performance of CrN and CrN/GLC coated components for automotive engine applications. J Alloys Compd 695: 433–442 (2017)
Bae J W, Asghari-Rad P, Amanov A, Kim H S. Gradient-structured ferrous medium-entropy alloys with enhanced strength-ductility synergy by ultrasonic nanocrystalline surface modification. Mater Sci Eng A 826: 141966 (2021)
Kim J G, Moon J H, Amanov A, Kim H S. Strength and ductility enhancement in the gradient structured twinning-induced plasticity steel by ultrasonic nanocrystalline surface modification. Mater Sci Eng A 739: 105–108 (2019)
Xu S, Cao Y, Duan B B, Liu H T, Wang J B, Si C R. Enhanced strength and sliding wear properties of gas nitrided Ti–6Al–4V alloy by ultrasonic shot peening pretreatment. Surf Coat Tech 458: 129325 (2023)
Wang J T, Qu C X, Geng J W, Li X Q, Qu S G. Effect of ultrasonic nanocrystal treatment combined with nitriding process on fretting wear behavior of textured 20CrMoH steel. Surf Coat Tech 457: 129263 (2023)
Dong M L, Cui X F, Lu B W, Feng X R, Song S Q, Jin G, Wang H D. Influence of surface nanocrystallization pretreatment on high-temperature vacuum carburizing behavior. J Mater Process Tech 278: 116519 (2020)
Lin Y M, Lu J, Wang L P, Xu T, Xue Q J. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater 54(20): 5599–5605 (2006)
Spriano S, Yamaguchi S, Baino F, Ferraris S. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater 79: 1–22 (2018)
Han X, Ma J X, Tian A X, Wang Y, Li Y, Dong B C, Tong X, Ma X L. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloid Surface B 227: 113339 (2023)
Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls. Materials 5(9): 1528–1545 (2012)
Chen M, Wang X Q, Hou X, Qiu J, Zhang E L, Hu J. Enhanced mechanical, bio-corrosion, and antibacterial properties of Ti–Cu alloy by forming a gradient nanostructured surface layer. Surf Coat Tech 465: 129609 (2023)