Thermochemical–mechanical damage prediction suitable for high-temperature and supersonic conditions is essential for evaluating the life span of barrel weapons. This paper proposes a thermochemical–mechanical damage prediction method in extreme environments by combining the cross-scale damage framework and scale expansion strategy. For the cross-scale damage framework, macroscale surface damage is converted into mesoscale particulate impacts via two-phase flow interior ballistics. The particulate impact is transformed into microscale crystal impacts via velocity decomposition and synthesis. For the scale expansion strategy, the dislocation features of discretized crystals are obtained via the momentum mirror. The first proposed boundary dislocation can solve the boundary coupling of discretized crystals and modify the hardening criterion. A damage agent model is constructed on the basis of sufficient samples to generalize mesoscale crystal damage to macroscale surface damage. A simulation experiment is executed to verify the accuracy of the calculation method for determining crystal impact damage under high-temperature supersonic environments. A launching experiment with 100 projectiles is executed to prove the accuracy of the thermochemical–mechanical damage prediction method.
Hirvonen J K, Derek Demaree J, Marble D K, Conroy P, Leveritt C, Montgomery J, Bujanda A. Gun barrel erosion studies utilizing ion beams. Surf Coat Tech 196(1–3): 167–171 (2005)
Duan C Z, Zhang F Y, Sun W, Xu X X, Wang M J. White layer formation mechanism in dry turning hardened steel. J Adv Mech Des Syst 12(2): JAMDSM0044 (2018)
Guo Y B, Janowski G M. Microstructural characterization of white layers formed during hard turning and grinding. Trans N Amer Manufac 32: 367–374 (2004)
Cote P J, Rickard C. Gas–metal reaction products in the erosion of chromium-plated gun bores. Wear 241(1): 17–25 (2000)
Cote P J, Lee S L, Todaro M E, Kendall G. Application of laser pulse heating to simulate thermomechanical damage at gun bore surfaces. J Press Vess T 125(3): 335–341 (2003)
Zou L B, Yu C G, Feng G B, Zhong J L, Lv Y. Establishment of erosion model of gun steel material and study on its erosion performance. J Mech Sci Technol 34(5): 2019–2026 (2020)
Li S L, Wang L Q, Xu F J, Yang G L. Numerical simulations for artillery barrel temperature variation considering mechanical friction heat under continuous shots. Int Commun Heat Mass 142: 106663 (2023)
Wang S W, Wang C B, Li W J. Thermodynamic coupling simulation of CrN/Cr composite coating barrel bore. Coatings 11(11): 1358 (2021)
Li S L, Wang L Q, Yang G L. Surface damage evolution of artillery barrel under high-temperature erosion and high-speed impact. Case Stud Therm Eng 42: 102762 (2023)
Yang Y Z, Zhang X Y, Xu C, Fan L X. Dynamic stress analysis of anisotropic gun barrel under coupled thermo-mechanical loads via finite element method. Lat Am J Solids Stru 17(1): e243 (2020)
Lee H L, Yang Y C, Chang W J, Wu T S. Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance. Appl Math Comput 209(2): 211–221 (2009)
Dou C H, Su B, Wang C Z, Jin P F, Chen J Y, Huang J F, Zhang C. A comparative study on gunpowder erosion and promoted ignition combustion of 30SiMn2MoV gun barrel. Eng Fail Anal 142: 106741 (2022)
Sun Y C, Cao H R, Wei X K. Micromechanism of plastic accumulation and damage initiation in bearing steels under cyclic shear deformation: A molecular dynamics study. Machines 10(3): 199 (2022)
Ha S, Kayani S H, Lee K, Park S, Kim J G, Seol J B, Sung H. Experimental and crystal plasticity finite element study of the deformation behavior of high-Mn steel micropillars. Steel Res Int 94(2): 2200254 (2023)
Sun X X, Li H W, Zhan M, Zhou J Y, Zhang J, Gao J. Cross-scale prediction from RVE to component. Int J Plasticity 140: 102973 (2021)
Harrison I S, Kurfess T R, Oles E J, Singh P M. Inspection of white layer in hard turned components using electrochemical methods. J Manuf Sci Eng 129(2): 447–452 (2007)
Mieszczynski C, Jozwik P, Skrobas K, Stefanska-Skrobas K, Ratajczak R, Jagielski J, Garrido F, Wyszkowska E, Azarov A, Lorenz K, et al. Combining MD-LAMMPS and MC-McChasy2 codes for dislocation simulations of Ni single crystal structure. Nucl Instrum Meth B 540: 38–44 (2023)
Wang K, Lai J, Xu J M, Liao T, Wang P, Chen R, Qian Y, Li L, Ma X C. Multiscale analysis of wheel-rail rolling contact wear and damage mechanisms using molecular dynamics and explicit finite elements. Tribol Int 185: 108574 (2023)
Dong X L, Rui X T, Li C. Interior ballistic two-phase flow model and its calculation for a mixed charge structure. Int Commun Heat Mass 144: 106788 (2023)
Finn J M, Hermiz K. The role of self-consistent Lagrangian chaos in Bénard convection in an annulus. Phys Fluids B Plasma 5(11): 3897–3907 (1993)
Bonny G, Terentyev D, Zhurkin E E, Malerba L. Monte Carlo study of decorated dislocation loops in FeNiMnCu model alloys. J Nucl Mater 452(1–3): 486–492 (2014)
Fthenakis Z G, Petsalakis I D, Tozzini V, Lathiotakis N N. Evaluating the performance of ReaxFF potentials for sp2 carbon systems (graphene, carbon nanotubes, fullerenes) and a new ReaxFF potential. Front Chem 10: 951261 (2022)
Bonny G, Terentyev D, Pasianot R C, Poncé S, Bakaev A. Interatomic potential to study plasticity in stainless steels: The FeNiCr model alloy. Model Simul Mater Sc 19(8): 085008 (2011)
Çekil H C, Özdemir M. The behaviour of boron carbide under shock compression conditions: MD simulation results. Comp Mater Sci 201: 110872 (2022)
Asaro R J, Rice J R. Strain localization in ductile single crystals. J Mech Phys Solids 25(5): 309–338 (1977)
Elliot R A, Orowan E, Udoguchi T, Argon A S. Absence of yield points in iron on strain reversal after aging, and the Bauschinger overshoot. Mech Mater 36(11): 1143–1153 (2004)
Chaffart D, Ricardez-Sandoval L A. Robust optimization of a multiscale heterogeneous catalytic reactor system with spatially-varying uncertainty descriptions using polynomial chaos expansions. Can J Chem Eng 96(1): 113–131 (2018)