Home Friction Article
PDF (5.4 MB)
Collect
Submit Manuscript
Research Article | Open Access | Online First

Probing dynamics and ion structuring of imidazolium ionic liquid confined at charged graphene surfaces using graphene colloid probe AFM

Muqiu Wu1,2,3,Zhongyang Dai4,Fan Zhang5Faiz Ullah Shah6Enrico Gnecco7Yijun Shi8Braham Prakash8Rong An1,3()
School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen 518055, China
Department of Engineering and Design, School of Engineering and Information, University of Sussex, Brighton BN1 9RH, UK
Chemistry of Interfaces, Luleå University of Technology, Luleå 97187, Sweden
Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow 30-348, Poland
Division of Machine Elements, Luleå University of Technology, Luleå 97187, Sweden

† Muqiu Wu and Zhongyang Dai contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Driven by the potential applications of ionic liquid (IL) flow for charging graphene-based surfaces in many emerging technologies, recent research efforts have focused on understanding ion dynamics and structuring at IL–graphene interfaces. Here, graphene colloid probe (GrP) atomic force microscopy (AFM) was used to probe the dynamics and ion structuring of 1-butyl-3-methylimidazolium tetrafluoroborate at graphene surfaces under various bias voltages. In particular, the AFM-measured nanofriction provides a good measure of the dynamic properties of the ILs at graphene surfaces. Compared with the IL at the unbiased graphene surface (0 V), the charged graphene surfaces with either negative (–1, –2 V) or positive (+1, +2 V) voltages favor a reduction in the friction coefficient by the IL. A higher magnitude of the bias voltage applied on the graphene surface with either sign (–2 or +2 V) results in a smaller friction coefficient than that at –1 and +1 V. In combination with the AFM-probed contact stiffness, adhesion forces, and ion structuring force curves with an ion orientational distribution according to molecular dynamics (MD) simulations, we discovered that the unbiased graphene surface (0 V) possesses randomly structured IL ions and that the graphene colloid probe is more likely to become stuck, resulting in more energy dissipation to contribute to a larger friction coefficient. Biasing of the graphene surface under either negative or positive voltages resulted in uniformly arranged ions, which produced a more ordered ion structure and, thus, a smoother sliding plane to reduce the friction coefficient. Electrochemical impedance spectroscopy (EIS) for the IL with graphene as an electrode demonstrated a greater ionic conductivity in the IL paired with the biased graphene than in the unbiased one, implying faster ion movement at the charged graphene, which is beneficial for reducing the friction coefficient.

Electronic Supplementary Material

Download File(s)
F0976-ESM.pdf (631.7 KB)

References

[1]

Wang Y L, Wang C L, Zhang Y Q, Huo F, He H Y, Zhang S J. Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels. Small 15(29): 1804508 (2019)

[2]

Yin J, Li X M, Yu J, Zhang Z H, Zhou J X, Guo W L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol 9(5): 378–383 (2014)

[3]

Guan Y J, Shao Q F, Chen W Q, Zhang J, Zhang X P, Deng Y Q. Flow-induced voltage generation by driving imidazolium-based ionic liquids over a graphene nano-channel. J Mater Chem A 6(25): 11941–11950 (2018)

[4]

Lu Y M, Wang Y L, Huo F, Chen W, Ma M, Ding W L, He H Y, Zhang S J. Ultralow friction and high robustness of monolayer ionic liquids. ACS Nano 16(10): 16471–16480 (2022)

[5]

Tian Z Q, Mahurin S M, Dai S, Jiang D E. Ion-gated gas separation through porous graphene. Nano Lett 17(3): 1802–1807 (2017)

[6]

Miao L, Song Z Y, Zhu D Z, Li L C, Gan L H, Liu M X. Ionic liquids for supercapacitive energy storage: A mini-review. Energy Fuels 35(10): 8443–8455 (2021)

[7]

Bag S, Samanta A, Bhunia P, Raj C R. Rational functionalization of reduced graphene oxide with imidazolium-based ionic liquid for supercapacitor application. Int J Hydrog Energ 41(47): 22134–22143 (2016)

[8]

Ye J L, Wu Y C, Xu K, Ni K, Shu N, Taberna P L, Zhu Y W, Simon P. Charge storage mechanisms of single-layer graphene in ionic liquid. J Am Chem Soc 141(42): 16559–16563 (2019)

[9]

Pereira G F L, Pereira R G, Salanne M, Siqueira L J A. Molecular dynamics simulations of ether-modified phosphonium ionic liquid confined in between planar and porous graphene electrode models. J Phys Chem C 123(17): 10816–10825 (2019)

[10]

An R, Laaksonen A, Wu M Q, Zhu Y D, Shah F U, Lu X H, Ji X Y. Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. Nanoscale 14(31): 11098–11128 (2022)

[11]

Hayes R, Warr G G, Atkin R. at the interface: Solvation and designing ionic liquids. Phys Chem Chem Phys 12(8): 1709–1723 (2010)

[12]

Sun T L, Lu Y M, Lu J F, Dong H, Ding W L, Wang Y L, Yang X H, He H Y. Water-controlled structural transition and charge transfer of interfacial ionic liquids. J Phys Chem Lett 13(31): 7113–7120 (2022)

[13]

Sha M L, Wu G Z, Liu Y S, Tang Z F, Fang H P. Drastic phase transition in ionic liquid [Dmim][Cl] confined between graphite walls: New phase formation. J Phys Chem C 113(11): 4618–4622 (2009)

[14]

Rajput N N, Monk J, Hung F R. Structure and dynamics of an ionic liquid confined inside a charged slit graphitic nanopore. J Phys Chem C 116(27): 14504–14513 (2012)

[15]

Gäding J, Tocci G, Busch M, Huber P, Meißner R H. Impact of confinement and polarizability on dynamics of ionic liquids. J Chem Phys 156(6): 064703 (2022)

[16]

Elbourne A, McDonald S, Voïchovsky K, Endres F, Warr G G, Atkin R. Nanostructure of the ionic liquid–graphite stern layer. ACS Nano 9(7): 7608–7620 (2015)

[17]

Wu B N, Breen J P, Xing X Y, Fayer M D. Controlling the dynamics of ionic liquid thin films via multilayer surface functionalization. J Am Chem Soc 142(20): 9482–9492 (2020)

[18]

Demir B, Searles D. Investigation of the ionic liquid graphene electric double layer in supercapacitors using constant potential simulations. Nanomaterials 10(11): 2181 (2020)

[19]

Fan P P, Qiu X H, Shah F U, Ji Q M, An R. The effect of nanoscale friction of mesoporous carbon supported ionic liquids on the mass transfer of CO2 adsorption. Phys Chem Chem Phys 22(3): 1097–1106 (2020)

[20]

An R, Zhu Y D, Wu N H, Xie W L, Lu J W, Feng X, Lu X H. Wetting behavior of ionic liquid on mesoporous titanium dioxide surface by atomic force microscopy. ACS Appl Mater Inter 5(7): 2692–2698 (2013)

[21]

Zhang M J, Ma N, Dai Z Y, Song X F, Ji Q M, Li L C, An R. Immobilizing ionic liquids onto functionalized surfaces for sensing volatile organic compounds. Langmuir 38(48): 14550–14562 (2022)

[22]

Wang T T, Li L C, Zhang F, Dai Z Y, Shah F U, Wang W, Xu F, An R. Microstructural probing of phosphonium-based ionic liquids on a gold electrode using colloid probe AFM. Phys Chem Chem Phys 24(41): 25411–25419 (2022)

[23]

Liu Y D, Zhang Y, Wu G Z, Hu J. Coexistence of liquid and solid phases of Bmim-PF6 ionic liquid on mica surfaces at room temperature. J Am Chem Soc 128(23): 7456–7457 (2006)

[24]

Lu Y M, Chen W, Wang Y L, Huo F, Zhang L, He H Y, Zhang S J. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid. Phys Chem Chem Phys 22(4): 1820–1825 (2020)

[25]

Wang B C, Li L. Direct observation of the double-layering quantized growth of mica-confined ionic liquids. Nanoscale 13(42): 17961–17971 (2021)

[26]

Wang B C, Li L. Effect of solid substrates on the molecular structure of ionic liquid nanofilms. Langmuir 37(50): 14753–14759 (2021)

[27]

Gong X, Kozbial A, Li L. What causes extended layering of ionic liquids on the mica surface. Chem Sci 6(6): 3478–3482 (2015)

[28]

Elbourne A, Sweeney J, Webber G B, Wanless E J, Warr G G, Rutland M W, Atkin R. Adsorbed and near-surface structure of ionic liquids determines nanoscale friction. Chem Commun 49(60): 6797–6799 (2013)

[29]

Hjalmarsson N, Atkin R, Rutland M W. Is the boundary layer of an ionic liquid equally lubricating at higher temperature. Phys Chem Chem Phys 18(13): 9232–9239 (2016)

[30]

Li H, Zhang Y X, Jones S, Segalman R, Warr G G, Atkin R. Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at Au(111) electrode interface. J Colloid Interf Sci 606: 1170–1178 (2022)

[31]

An R, Wei Y D, Qiu X H, Dai Z Y, Wu M Q, Gnecco E, Shah F U, Zhang W L. Ionic liquids on uncharged and charged surfaces: In situ microstructures and nanofriction. Friction 10(11): 1893–1912 (2022)

[32]

Kim J S, Lee S C, Hwang J, Lee E, Cho K, Kim S J, Kim D H, Lee W H. Enhanced sensitivity of iontronic graphene tactile sensors facilitated by spreading of ionic liquid pinned on graphene grid. Adv Funct Mater 30(14): 1908993 (2020)

[33]

Li H, Rutland M W, Watanabe M, Atkin R. Boundary layer friction of solvate ionic liquids as a function of potential. Faraday Discuss 199: 311–322 (2017)

[34]

Sweeney J, Hausen F, Hayes R, Webber G B, Endres F, Rutland M W, Bennewitz R, Atkin R. Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys Rev Lett 109(15): 155502 (2012)

[35]

Li H, Wood R J, Rutland M W, Atkin R. An ionic liquid lubricant enables superlubricity to be “switched on” in situ using an electrical potential. Chem Commun 50(33): 4368–4370 (2014)

[36]

Qiu X H, Lu L H, Qu Z Y, Liao J T, Fan Q, Shah F U, Zhang W L, An R. Probing the nanofriction of non-halogenated phosphonium-based ionic liquid additives in glycol ether oil on titanium surface. Friction 10(2): 268–281 (2022)

[37]

Bocquet L. Nanofluidics coming of age. Nat Mater 19(3): 254–256 (2020)

[38]

Majumder M, Chopra N, Andrews R, Hinds B J. Enhanced flow in carbon nanotubes. Nature 438(7064): 44 (2005)

[39]

Secchi E, Marbach S, Niguès A, Stein D, Siria A, Bocquet L. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537(7619): 210–213 (2016)

[40]

Bresme F, Kornyshev A A, Perkin S, Urbakh M. Electrotunable friction with ionic liquid lubricants. Nat Mater 21(8): 848–858 (2022)

[41]

Pivnic K, Fajardo O Y, Bresme F, Kornyshev A A, Urbakh M. Mechanisms of electrotunable friction in friction force microscopy experiments with ionic liquids. J Phys Chem C 122(9): 5004–5012 (2018)

[42]

Liu S W, Wang H P, Xu Q, Ma T B, Yu G, Zhang C H, Geng D C, Yu Z W, Zhang S G, Wang W Z, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8: 14029 (2017)

[43]

Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W. Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38(1–8): 430–437 (2000)

[44]

Maier S, Sang Y, Filleter T, Grant M, Bennewitz R, Gnecco E, Meyer E. Fluctuations and jump dynamics in atomic friction experiments. Phys Rev B 72(24): 245418 (2005)

[45]

Liu W H, Bonin K, Guthold M. Easy and direct method for calibrating atomic force microscopy lateral force measurements. Rev Sci Instrum 78(6): 063707 (2007)

[46]

Liu Z P, Huang S P, Wang W C. A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108(34): 12978–12989 (2004)

[47]
Dommert F, Schmidt J, Qiao B F, Zhao Y Y, Krekeler C, Delle Site L, Berger R, Holm C. A comparative study of two classical force fields on statics and dynamics of [EMIM][BF4] investigated via molecular dynamics simulations. J Chem Phys 129 (22): 224501 (2008)
[48]

Shao Q, Zhou J, Lu L H, Lu X H, Zhu Y D, Jiang S Y. Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes. Nano Lett 9(3): 989–994 (2009)

[49]

Yang D S, Fu F J, Li L, Yang Z, Wan Z, Luo Y, Hu N, Chen X S, Zeng G X. Unique orientations and rotational dynamics of a 1-butyl-3-methyl-imidazolium hexafluorophosphate ionic liquid at the gas–liquid interface: The effects of the hydrogen bond and hydrophobic interactions. Phys Chem Chem Phys 20(17): 12043–12052 (2018)

[50]

Willcox J A L, Kim H J, Kim H J. A molecular dynamics study of the ionic liquid, choline acetate. Phys Chem Chem Phys 18(22): 14850–14858 (2016)

[51]

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1): 1–19 (1995)

[52]

Li Z L, Deng L B, Kinloch I A, Young R J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Prog Mater Sci 135: 101089 (2023)

[53]

Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18): 187401 (2006)

[54]

An R, Qiu X H, Shah F U, Riehemann K, Fuchs H. Controlling the nanoscale friction by layered ionic liquid films. Phys Chem Chem Phys 22(26): 14941–14952 (2020)

[55]

Latham J A, Howlett P C, MacFarlane D R, Somers A, Forsyth M. Anodising AZ31 in a phosphonium ionic liquid: Corrosion protection through composite film deposition. J Electrochem Soc 159(11): C539–C545 (2012)

[56]

An R, Huang L L, Long Y, Kalanyan B, Lu X H, Gubbins K E. Liquid–solid nanofriction and interfacial wetting. Langmuir 32(3): 743–750 (2016)

[57]

Quignon B, Pilkington G A, Thormann E, Claesson P M, Ashfold M N R, Mattia D, Leese H, Davis S A, Briscoe W H. Sustained frictional instabilities on nanodomed surfaces: Stick–slip amplitude coefficient. ACS Nano 7(12): 10850–10862 (2013)

[58]

Smith A M, Lovelock K R J, Gosvami N N, Welton T, Perkin S. Quantized friction across ionic liquid thin films. Phys Chem Chem Phys 15(37): 15317–15320 (2013)

[59]

Leng Y S, Jiang S Y. Dynamic simulations of adhesion and friction in chemical force microscopy. J Am Chem Soc 124(39): 11764–11770 (2002)

[60]

Pethica J B, Oliver W C. Tip surface interactions in STM and AFM. Phys Scripta 1987: 61–66 (1987)

[61]

Di Lecce S, Kornyshev A A, Urbakh M, Bresme F. Electrotunable lubrication with ionic liquids: The effects of cation chain length and substrate polarity. ACS Appl Mater Inter 12(3): 4105–4113 (2020)

[62]

Kondrat S, Feng G, Bresme F, Urbakh M, Kornyshev A A. Theory and simulations of ionic liquids in nanoconfinement. Chem Rev 123(10): 6668–6715 (2023)

[63]

Werzer O, Cranston E D, Warr G G, Atkin R, Rutland M W. Ionic liquid nanotribology: Mica–silica interactions in ethylammonium nitrate. Phys Chem Chem Phys 14(15): 5147–5152 (2012)

[64]

Steiner P, Roth R, Gnecco E, Glatzel T, Baratoff A, Meyer E. Modulation of contact resonance frequency accompanying atomic-scale stick–slip in friction force microscopy. Nanotechnology 20(49): 495701 (2009)

[65]

Berrod Q, Ferdeghini F, Judeinstein P, Genevaz N, Ramos R, Fournier A, Dijon J, Ollivier J, Rols S, Yu D, et al. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes. Nanoscale 8(15): 7845–7848 (2016)

[66]

Federici Canova F, Matsubara H, Mizukami M, Kurihara K, Shluger A L. Shear dynamics of nanoconfined ionic liquids. Phys Chem Chem Phys 16(18): 8247–8256 (2014)

[67]

Xie G X, Luo J B, Guo D, Liu S H. Nanoconfined ionic liquids under electric fields. Appl Phys Lett 96(4): 043112 (2010)

[68]

Mendonça A C F, Pádua A A H, Malfreyt P. Nonequilibrium molecular simulations of new ionic lubricants at metallic surfaces: Prediction of the friction. J Chem Theory Comput 9(3): 1600–1610 (2013)

[69]

Li H, Rutland M W, Atkin R. Ionic liquid lubrication: Influence of ion structure, surface potential and sliding velocity. Phys Chem Chem Phys 15(35): 14616–14623 (2013)

[70]

Cooper P K, Wear C J, Li H, Atkin R. Ionic liquid lubrication of stainless steel: Friction is inversely correlated with interfacial liquid nanostructure. ACS Sustain Chem Eng 5(12): 11737–11743 (2017)

[71]

Atkin R, Warr G G. Structure in confined room-temperature ionic liquids. J Phys Chem C 111(13): 5162–5168 (2007)

[72]

Wang X, Zhang M J, Li L C, Ullah Shah F, An R. Supported fluorine-free ionic liquids with highly sensitive gas-sensing performance. J Mol Liq 390: 123122 (2023)

[73]

Chen Z W, Gui Q Y, Wang Y P. Dynamic chemistry in ionic liquid-based conductor. Green Chem Eng 2(4): 346–358 (2021)

[74]

Unemoto A, Iwai Y, Mitani S, Baek S W, Ito S, Tomai T, Kawamura J, Honma I. Electrical conductivity and dynamics of quasi-solidified lithium-ion conducting ionic liquid at oxide particle surfaces. Solid State Ionics 201(1): 11–20 (2011)

[75]

Noofeli A, Hall P J, Rennie A J R. Ionic liquid based EDLCs: Influence of carbon porosity on electrochemical performance. Faraday Discuss 172: 163–177 (2014)

Friction
Cite this article:
Wu M, Dai Z, Zhang F, et al. Probing dynamics and ion structuring of imidazolium ionic liquid confined at charged graphene surfaces using graphene colloid probe AFM. Friction, 2025, https://doi.org/10.26599/FRICT.2025.9440976
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return